Some thoughts on the energy and climate package

Georg Zachmann

12 June 2013

Messages

- Energy is a crowded policy space
- The big decarbonisation challenge: balancing flexibility and long-term commitment
- Only targeting RES deployment is under-complex
- Need for a neutral and transparent accounting framework to structure the debate

Agenda

- 1. A crowded policy space
- 2. The ETS an efficient tool in troubled water
- 3. RES-support deployment is not everything
- 4. Potential Lessons

Each technology is faced with a number of externalities

	Externalities			Public goods			Other MF, BF & barriers	Policy failures
	Env't	Tech (+)	SoS (-)					
Mitigation								
Low-carbon technologies	P	S	S	P	S	N	P	*
Energy savings	S	S	S	N	P	P	N	*
REDD	P	N	N	P	N	N	N	*
Sequestration	P	S	S	P	S	N	P	*

For externalities there are multiple solutions

		Tech (+)	SoS				Other MF, BF
Solutions	(-)		(-)	goods	problems	failures	& barriers
Markets							
Establish property rights	P	P	N	N	N	N	N
Create new markets	P	N	P	N	S	S	N
Incentives							
Taxes	P	N	P	N	N	N	N
Subsidies	S	P	S	S	S	S	S
Rules							
Frameworks	P	P	P	P	P	P	P
Command & Control	S	N	S	N	P	P	N
Nudge	N	N	N	N	P	P	N
Enhanced appraisal	N	N	N	N	P	N	<i>P</i> *
Insurance	N	N	N	N	P	P	P **
Non-market supply	N	N	S	P	P	N	P***

Stylised example – a crowded policy space

		Decarb	onisation	Energy	Renewables	Environment	
		ETS	Non-ETS	efficiency	Reflewables		
Ta	argets:	EU	MS	EU	MS	MS	
E	lectricity	>20 MW	<20 MW	EED	RES-E	LCPD, IED	
Transport	Aviation	com'ial flights		/			
	Road	EV's	X	EPS	biofuels directive,	NECD, Euro VI,	
	Maritime		X	/		Marine fuels Directive,	
Н	eating	District heating	X	EED	RES-H	•••	
A	griculture		X		/		
In	dustry	Cement, paper				LCPD, IED	

Are overlapping instruments a problem?

Are overlapping instruments a problem?

- Subsidising the cost of RES reduces the carbon price -> lignite and coal plants continue to work ("green serves the dirtiest")
- Also true in the long-term (support to one tech prevents others)
- Risk: Increasing energy price differentials -> energy consumption off-shores -> decarbonisation in EU -> ETS collapse

But there are reasons for overlap's

- If the cap is not binding there could be emission reductions
- If the cap is binding, RES support might resolve other externalities
 - Technology externality
 - Security of supply
 - Non-ETS emissions
 - effectively address relevant market failures (information barriers, market power, split incentives)
 - Industrial policy

How can overlaps be dealt with?

- Ignore overlaps (targets will be fulfilled)
- Prevent overlaps (ETS vs. non-ETS sectors)
- Include overlaps in the target setting (20-20-20?)
- Require "sterilization" of additional effects (CCS draft communication)

The ETS

- 1. A crowded policy space
- 2. The ETS an efficient tool in troubled water
- 3. RES-support deployment is not everything
- 4. Potential Lessons

Optimal decarbonisation pattern

In the short-term:

 Trade-off between different uses of carbon (e.g., electricity vs. heat) and different technologies (gas vs. coal)

In the long-term:

- Trade-off between cheap early abatement and expensive late abatement
- Price gives visibility for investments with long lifetimes and investments in new technologies
- The ETS ensures that a fixed amount of carbon is optimally allocated to technologies and time

ETS Design

- A number of allowances is distributed
 - For free to selected companies
 - Auctioned by member states
- Each company in a covered sector has to surrender one allowance per tonne of CO2 emitted
- Allowances can be traded
- Allocation rules are decided in multi-year phases

The first two phases of the EU ETS

- 2005-2007: trial phase (first phase)
 - Grandfathering of allowances
 - No banking

- 2008-2012: second phase
 - Mainly Grandfathering of allowances
 - Banking

Tighter cap, the amount of allowances distributed was reduced from 2007 to 2008 by about 11 percent

ETS emissions by sector

Third phase

- The ETS entered its third phase, at the beginning of 2013, as a more mature system.
- It covers
 - more sectors,
 - more countries
 - more greenhouse gases
- Allocation of allowances has become less distorting.
- Stricter treatment of international credits
- Fraud has been made more difficult

Source: Bruegel based on CITL.

Reductions caused by the shift to the second period

-3.6%**

Control variables

Changes in turnover

19.1%***

Changes in employment

0.07%

Source: Abrell et al (2011). Note: significance: ** at 5% and *** at 1%.

=> ETS is effective, i.e., caused additional emission reductions

Table 2: Relative change in the growth rate of emissions between (2005-06) and (2007-08) by sector						
		Pulp & paper	Non-metallic minerals	Basic metals	Electricity & heat	
Reductions caused by shift to the 2nd period		-2.9%	-8.7%***	-9.5%*	-0.1%	
Control	Changes in turnover	15.4%**	29.9%***	8.9%	13.6%**	
variables	Changes in employment	-6.2%	-4.6%	9.9%	1.2%	
Source: Abrell et al (2011). Note: significance: * at 10%, ** at 5 % and *** at 1%.						

=> ETS discriminates between sectors

A surplus in 2013

- Recession: industrial production grew from 2003 to 2007 by almost three percent per year, but decreased by almost two percent per year between 2008 and 2012 [up to 500 million tonnes of CO2].
- Substituting policies: 20 percent energy efficiency target as well as the 20 percent renewables target [increase in efficiency + renewables would imply a carbon reduction of up to 150 + 200 million tonnes of CO2 in 2012]
- International credits: 1420 million tonnes in phase II
- exceptional allocation in 2012/2013: some additional 500 million allowances brought to the market (NER, NER300, early 3rd)

The existing ETS implies high prices

Figure 3: Future development of the ETS (million tonnes CO2, left scale)

- System tightens constantly
- Intertemporal arbitrage should induce higher prices today

But, surplus translated into a price slump

Source: Datastream. Price per EU emission allowance.

Two possible reasons:

- Structural oversupply (low growth, new technologies)
- No credible commitment (tools and incentives to deviate ex post)

Regulatory uncertainty in the ETS

Future of decarbonisation

- International agreement (COP 2015, bilateral linking)
- EU ambition for 203 / 2050 / beyond

Future of the ETS

- Renationalisation
- A European carbon tax

Design of the system

- International Credits
- Future treatment of "carbon leakage":
 - Free allowances
 - Border carbon adjustment
- Sectoral coverage
- Allocation rules / Allocation timing / bankability
- ...

Overlapping instruments

Low prices are a problem!

- Risk of locking-in high future emission patterns
- Encourages national emission reduction policies
- Encourages sectoral emission reduction policies
- => self-fulfilling prophecy

Reestablishing confidence

- Need for a long-term commitment device
- Selling guarantees on the future minimum carbon price (i.e., a put-option):
 - Public money at stake -> market participants reassured of the long-term nature of the ETS
 - Targeted intervention -> can encourage investments today
 - In the central scenario a positive cash-flow for the public sector
 - Otherwise, cost of changing policies are socialised

Example

- EIB auctions off guarantees for buying 1 bn emission allowances in the year 2030 at €40
- At current carbon price the value of the guarantee is about €25 =>
 significant upfront revenues
- Confidence in the system increases => present carbon price rises [risk free price is about €28]
 - Enables low-carbon investment
 - Increases allowance auctioning revenues
 - Makes national decarbonisation measures redundant
 - Gives time for discussing structural tightening
- If politically stabilising ETS by 2030 is successful, public sector makes money
- If politically stabilising the ETS by 2030 fails, the cost of early low-carbon investments is partly socialised

Conclusion

- Emission Trading System can perform well
- Tool for synchronizing decarbonisation across
 - sectors,
 - countries
 - and time
- A short-term surplus of allowances emerged
- ETS freight with political uncertainty -> Lack of confidence breaks inter-temporal arbitrage
- Subsequent price slump endangers the system

RES support

- 1. A crowded policy space
- 2. The ETS an efficient tool in troubled water
- 3. RES-support deployment is not everything
- 4. Potential Lessons

Why public support for renewables?

- Emission reduction
 - Direct: lower emission per Joule
 - Indirect: lower emission reduction cost (learning)
- Security of supply
 - Lower energy import dependency
- Industrial policy
 - Local value content
 - Infant industry

Stylized Electricity System cost - static

Stylized Electricity System cost - dynamic

Innovation needs – Energy Roadmap assumptions on capital cost

A large gap ...

Capital cost reduction 2010-2050	
Pulverised Coal Supercritical CCS oxyfuel	-45%
Integrated Gasification Combined Cycle Coal	-30%
Gas combined cycle CCS pre combustion	-43%
Steam Turbine Coal Supercritical	-29%
Gas Turbine Combined Cycle Gas Advanced	-17%
Nuclear third	-17%
Wind Power	-3%
Wind Power Offshore	-10%
Solar PV	-67%
Solar Thermal	-69%
Geothermal	-9%

... when compared with the past

Capital cost of major technologies 1970-1995

Source: Jim Watson 2001, Diesendorf 2010

Green Innovation policies

- Supporting green R&D: "technology push"
 - Tax breaks
 - Public private partnerships
 - Public R&D
 - ...
- Increasing demand for green technology: "market pull"
 - Emission pricing
 - Renewables support (feed-in, quota, ...)
 - Regulation (fuel emission standards, light bulb, ...)
 - Public procurement
 - ...

Technology support

Experience curves

Source: ECN University Utrecht 2008: Technological learning in the energy sector

Push: Solar R&D

Pull: Annual Photovoltaic Installed Capacity

in Megawatts

Source: Earth Policy Institute Data Center. Retrieved from http://www.earth-policy.org/data_center/C23 on April 17, 2012

2009 Net Support Costs vs RD&D

Source: IEA 2012; EcoFys, Fraunhofer ISI, TU Vienna EEG, and Ernst &Young Report: "Financing Renewable Energy in the European Energy Market"

Some naive questions:

- Should we not spend more on research capacity?
- Why have so many PV firms left the market?
- Are short-term deployment programmes sufficient to generate the breakthrough technology innovations?

Technology stages for electricity generation technologies

Stago	PV	Off- shore	On- shore	 Nuclear fission	Nuclear fusion	CCS	Policy
Stage		311016	311016	11331011	1031011		Policy
theoretical					X	X	Public Basic research
Experimental							Support Industry R&D
Pre- commercial	X	X		X			Support deployment
Commercial			X	?			Appropriate market design
Potential							

Why public support for renewables?

- Emission reduction
 - Direct: lower emission per Joule
 - Indirect: lower emission reduction cost (learning)
- Security of supply
 - Lower energy import dependency
- Industrial policy
 - Local value content
 - Infant industry

Does market size drive competitiveness?

Data: UN COMTRADE

- Countries with large wind turbine deployment are particularily good at exporting turbine (DE,DK,ES,PT)
- For solar less clear

Did deployment drive export competitiveness?

- ⇒ Yes, clear effect for wind, less for solar
- ⇒ Success depends on technology (learning rates, tradability)

Not all countries have the same industrial capabilities

The Product Space maps correlation in export competitiveness of different products.

Which countries have strong PV-supporting sectors?

Which countries have strong wind-supporting sectors?

The case for "green industrial policy" is complex.

Conclusion

- Optimal volume, targeting and timing of innovation policies impossible to determine
- Currently a "shot in the dark" based on predictions by vested interest
- Uncertainty makes support more expensive

Agenda

- 1. A crowded policy space
- 2. The ETS an efficient tool in troubled water
- 3. RES-support deployment is not everything
- 4. Potential Lessons
 - a) Match instruments and objectives
 - b) Reduce regulatory risk

a) Match instruments and objectives

First principles:

- Target well identified externalities (otherwise risk to only cause distortions)
- Clear accounting of which instruments serve which objectives in order to evaluate
- Redistribution through transfers, not through compromising efficiency (ETS auctioning revenues and free-allocation vs. RES burden sharing)

b) Reduce regulatory risk

- Long-term objectives require long-term investments
- But, many ad hoc policies (RES support, EED)

Some tools for reducing regulatory risk:

- A credible and transparent long-term vision (see b1)
- Transparent reaction functions (see b2)
- Provisions for compensating losses caused by political changes
- Financial commitment devices (see ETS example)

b1) EU Energy modelling

Many policy choices should be informed by modelling:

- 1. Long-term Roadmaps
- 2. Public support to competing technologies
- 3. Network planning
- 4. Market design choices

=> Multi-billion Euro questions

- Current EU situation
 - 1-3 are based on the PRIMES model
 - For 4(&2) modelling is provided by (interest sponsored) consultants
- ⇒ Assumptions and modelling rarely disclosed and not comparable
- ⇒ Modelling results are perceived as "politically predetermined"

Input data are crucial

=> A reference model with a reference data set to structure the debate could improve the policy discussion and eventually policies at comparatively low cost.

A benchmark process exists

- US EIA (DOE) publishes the Annual Energy Outlook
- Its general modelling methodology is made transparent in
 - an overview,
 - documentation of the individual modules,
 - an annually reviewed assumptions report for each of the modules,
 - most parts of the National Energy Modeling System are in the public domain
- The EU could go beyond, by structuring a transparent process of
 - Gathering assumptions
 - Determining scenarios

b2: Transparent and predictable support policy 1

- A consistent policy should primarily comprise of a set of horizontal policies to resolve existing market failures (eg, carbon pricing).
- But support instruments for R&D and deployment are technologyspecific => technology choice is critical
- excessive support to one technology might slow down the development of others

Transparent and predictable support policy 2

- Predictability and technology-neutrality can only be ensured when
 - Technology choice is based on metrics and priorities defined by politics
 - Stakeholders are incentivised to provide unbiased forecasts of the capabilities of their technology
 - Technology choice is based on a open multi-technology model to provide guidance for the targeting of support
 - A corresponding model is built, maintained, extended and published by an independent public institution.
- would ensure that stakeholders can predict public technology decisions,
- thus find it easier to commit to the needed long-term and risky investments
- To achieve the enormous cost-reductions necessary for the Energy Roadmap, not only technology needs to learn – also support policies have to improve based on experience!

References

- Georg Zachmann (2013), You'd better bet on the ETS. Bruegel Policy Brief 2013/02 (link).
- Georg Zachmann (2013), Electricity infrastructure: More border crossings or a borderless Europe? Bruegel Policy Contribution 2013/05 (<u>link</u>).
- Georg Zachmann (2012), Private long-term investment in uncertain times, Bruegel Policy Contribution 2012/24 (link).
- Edward Calthrop, Atanas Kolev, Armin-D. Riess, Georg Zachmann (2012), Investment and growth in the time of climate change. Bruegel, Brussels (link).
- Georg Zachmann (2012), Cutting carbon, not the economy. Bruegel Policy Contribution 2012/03 (link).
- Georg Zachmann, Michael Holtermann et al. (2012). The great transformation: decarbonising Europe's energy and transport systems.
 Bruegel Blueprint XVI (link).
- Georg Zachmann (2010), Power to the people of Europe, Bruegel Policy Brief 2010/4 (link).

Back-up: internal energy market

Messages

- Benefits of cooperation increase
- To reap these benefits:
 - Market design needs to be updated
 - System operation needs to be Europeanised
 - Network development needs to follow welfare-optimisation
- Alternatively, scope for markets will vanish

Agenda

- 1. Benefits of cooperation
- 2. Reaping the benefits
- 3. Discussion

Effects of integrating renewables

- Renewables will make the residual demand more volatile
- Renewables will be produced at different location
- At some hours almost no renewable unit will run
- Significant shift of supplies might happen at rather short notice
- ⇒ sufficient complementary technologies needed (transmission, demand response, conventional generation, storage)
- ⇒ Appropriate market design to remunerate the investment and operation of these technologies needed

More integration is part of the least cost solution

- Geographic averaging of individual resources
- Pooling of national resources
- Pooling of reserves
- For small and medium countries
 - Larger portfolio of plants possible (reactiveness, marginal cost, fix cost, fuels)
 - Competition at all steps of the merit order curve

Simulation exercise

Two countries

- Solar correlation 98%,
- Wind correlation 76.5%,
- Demand correlation 78%
- 28 h are among the 100 h with the highest residual demand in both countries

Four technologies

	Capacity, Country A (MW)	Capacity, Country B (MW)	Fixed cost in Euro/MW/y	Variable cost in Euro/MWh
Renewables	23,000	13,000	120,000	0
Nuclear	5,500	3,900	190,000	10
Coal	7,100	22,600	100,000	21
Gas	7,600	10,600	40,000	35

Four scenarios:

- 1. No trade
- 2. Limited trade
- 3. Full trade
- 4. Reoptimisation of power plant park (excl. RES and nuclear)

Static efficiencies of integration

99.1

5% Transmission

Full Integration

98.1

No Integration

100

Total costs

Going from an individually to jointly optimised system

	No Integration	5% Transmission	Full Integration
System cost	100	98.9	97.5

Gains of integration at higher shares of RES

	No Integration	5% Transmission	Full Integration
Current	100	98.9	97.5
Renewables			
High Renewables	100	97.5	95.4

Interpretation

- 1. Most (static) trade benefits accrue already at limited trade
- 2. Full trade has some marginal benefits
- 3. Additional gain in Reoptimisation of power plant park
- 4. Increasing RES share increases the value of interconnection

Willingness to pay for interconnectors

Reaping the benefits

- 1. Benefits of cooperation
- 2. Reaping the benefits
- 3. Discussion

Important benefits have been reaped in the past

Reaping the benefits

Requirements

- The physical network and its operation have to reliably ensure the optimal cross-border exchanges
- Market Design has to ensure that production, consumption and investment decisions do depend on the cost (incl. externalities) and not on the country

Determining optimal infrastructure

- Determining optimal infrastructure need is a challenging exercise that crucially depends on a number of assumptions.
 - 1. Which measure should be optimised by the infrastructure investment?
 - 2. Which development of the energy system in the coming decades is considered?
 - 3. Which technical options are considered?
 - 4. What cost assumptions for the different options?
 - 5. Which market design is assumed?

=> Estimates are largly assumption driven and barely comparable

Infrastructure cost studies

Roland Berger's report (2011)

 distribution and transmission together will require around EUR 400 billion + EUR 200 billion for 2010-2020 (65% electricity, 35% gas)

The European Infrastructure Priorities (2010)

 2011-2020: EUR 70 billion for transmission infrastructure, EUR 32 billion for offshore grid infrastructure and EUR 40 billion for smart grid infrastructure.

2013 OECD working paper

 Grid shortage would make renewables deployment 38 billion dollars more expensive

The <u>Energy Roadmap 2050</u>

 2011-2050 infrastructure requirements reach EUR 1269 billion in the reference and EUR 2195 billion in the high RES scenario

Infrastructure cost studies

- Ten Year Network Development Plan 2012
 - increasing the total length of the network by 17 % over the coming ten years
- <u>ECF</u>'s study (2011)

- Hirschhausen et al. (2012)
 - Total investment costs for transmission capacity in Europe 2011-2050 of "80% GHG reduction" scenario: EUR 57 bn

Electricity has multiple dimensions that can be individually traded

	Nationally administered	National market	National market with an interface for imports/exports	European market	Expected change in Importance
Ancillary services					+
Intraday & Balancing			Nordic+		+
Day-ahead delivery of electricity	f				-
Supply Adequacy					+
Location			Nordic		+
"Greenness"		Quotas			+
Emissions				ETS	

- Dimensions interact: => "grand design" or complex set of interfaces
- Existing national arrangements and national plant park

-> cross-border harmonisation produces losers

Discussion

- 1. Benefits of cooperation
- 2. Reaping the benefits
- 3. Discussion

Discussion: Governance

Different regional settings

- EU 27+ (ENTSO, ACER, EU)
- NWE
- Penta-lateral
- Bilateral (FR-DE)

Different institutional frameworks

- Merger of TSOs
- Independent system operator
- Merger of PX
- Joint regulator