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Abstract

In this paper a novel eectricity price model is developed and applied. We
reproduce the merit order of a thermal-dominated electricity system by
establishing a non-linear dependency of wholesale electricity prices on the
prices of fuels (coal and natural gas) and of CO, emission allowances. The
coefficients are estimated using a Markov Switching Regression. This
allows to study the nonlinear interaction between fuel and electricity prices.
Consequently, this approach might prove valuable for cross-hedging
positions in the fuel, electricity and emission spot markets. It is also of use
for studying, to which decree electricity prices in different countries reflect
fuel cost. Applying the model to the electricity markets of the UK and
Germany we find that British electricity prices are quite well explained by
short-run cost factors while German are less so.
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A Introduction

Electricity markets differ from other commodity rkats in various respects. Demand for
electricity is inelastic in the short term, storilmgs expensive, parts of the value chain exhibit
characteristics of natural monopolies and reliadetricity supply has high macroeconomic
importance. In addition, electricity might be predd by a set of different technologies each

of which being characterised by different margicadt.

With the emergence of electricity spot markets, dtatistical behavior of the prices attracted
the attention of speculators, arbitrageurs and mslhagers, not least because future and
option contracts are usually settled at the spaepiThis opened a new field of study for
financial mathematics, and it soon became obvidw electricity prices behave very
differently from prices for physical commoditiesaportant findings include the observations
that prices mostly contain no unit root (Lucia aBdhwartz (2001), Worthington et al.
(2005)); exhibit mean reverting behavior (Carteal dfigueroa (2005)); feature strong
seasonalities; high volatility; fat tails; and lomgemory behavior (Haldrup and Nielsen
(2006)). Sophisticated stochastic models for dlgttrprices were developed based on the
observed characteristiésWeather, fuel prices, emission allowance pricesailable
generation capacities, imports, transmission cdiggesmarket structure and the national fuel
mix are key explanatory variables for price behawiolrhose factors differ substantially
between markets and thus electricity price modedsoéten only suitable for a specific power
exchange.

Due to certain specifics of electricity prices g.estrong heteroscedasticity and pronounced
price spikes — Markov regime switching models hganed quite some popularity for
modeling electricity prices.These models allow to capture spikes in the plesels and
variance regimes. Thus, price and volatility fostsdor electricity prices can be significantly
improved. Furthermore, Markov regime switching medslow to make electricity prices in
different regimes conditional to different lineanebinations of fuel and emission allowance
prices®> This makes it possible to econometrically represtie well known non-linear

relationship between the different price seriesngeguently, corresponding models can be

% Haldrup and Nielsen (2004) for example find a megiswitching long memory model to adequately foseca
spot prices in the Nordic market. Periodic heteedsistic autoregressive fractionally integrated mg\dverage
model models were proposed by Carnero et al. (2@0i0) Cartea and Figueroa (2005) suggests jumpsibff
models. Overviews of the relevant literature carfidoad in Bunn (2004), Knittel and Roberts (2004) a
Skantze and llic (2001).

* For an overview see Janczura and Weron (2010).



used to better predict electricity prices, optimmetfolios consisting of electricity contracts,
fuel contracts and emission allowances or comgeetice formation in different countries.
To our knowledge this paper is the application oMarkov regime switching model to
represent the merit order. The next section inttedithe data for the UK and Germany used
in our model:. Section 3 presents the model, SecHo presents the results and an
interpretation, and Section 5 concludes.

2 Data

The German and UK electricity systems are comparabkize (see Table 1). Conventional
thermal power plants account for most of the elatgrgeneration (62% in Germany and
78% in the UK). One obvious difference is that thi€ does not use lignite for which it

compensates by an increased share of natural gas.

Table 1: Gross electricity generation (2007)

Germany| UK
Annual gross electricity generation 637 TWh 396 TWH
Coal 47% 35%
Qil 2% 1%
Gas 13% 42%
Nuclear 22% 16%
Renewables 15% 5%
Other 1% 1%
Source: Eurostéat

Both countries’ wholesale markets are particulathted to our modeFirst, neither market

iIs endowed with significant hydropower capacityislis an advantage because our model is
unable to reproduce the dynamic opportunity cosessment required for analyzing the
marginal cost of a hydro planfecond, both markets provide reference prices. Hourlyt spo
electricity prices for Germany are obtained frora EX (prices are formed by day-ahead,
two-side, one-shot, sealed-bid uniform-price auns)oBy contrast, half-hourly spot prices at
the UK Power Exchange (UKPX) are obtained in 48ffammntinuous trading until a half-hour
ahead of delivery.However, both countries differ markedly in marké&tcture and design.
While the UK has two decades of experience withketaopening and regulation, Germany

only addressed sector reforms in the first parthi§ decade, and established a national

® In section 3 we explain that such a formulatioseesially is a stylized representation of the fundatal merit
order.

® The data were retrieved from Eurostat [http://eppstat.ec.europa.eu).

" Most of the high-frequency price and volume daimleyed in this dissertation were not freely avalia but
could only be obtained upon request from the cpording data providers. The usage rules did notadl
publication of the original data in this dissenati



regulator in mid-2005. The four privately ownednseission system operators in Germany
retain significant stakes in generation (togeth€68of total capacity in 206 and

distribution. The integration of the two major Gamplayers, E.on and RWE, and their
natural gas affiliates enhances their dominance. situation in the UK, on the other hand, is
more balanced. The transmission system operatd)1sSunbundled and national regulation
is effective. The six biggest generation companeggether were in 2007 responsible for
around 69% of the electricity productidilthough they are integrated with electricity and

gas suppliers, no one has a position comparalhettbig four” in Germany.

Table 2: Summary of the data sample (working daysahuary 2004 - November 2010)

Germany United Kingdom
Unit Source Mean| Varianceé Source Mean Variance
Electricity off-peak €/MWhR | EEX 38.0 348, UKPX 40.9 34%
Electricity on-peak €/MWE® | EEX 62.3 16820 UKPX 64.1 1764
Gas spot price €/MWh | TTF 16.9 36/ NBP 17.9 69
Coal spot price €/ MWh | ARA 8.2 7| ARA 8.2 7
Emission allowance €/EUA EEX 12{1 19 EEX 12.1 79

Because our model is only meaningful in the shad emedium run, we used daily price
notations for all commodities. Since no daily Genngas and coal prices were available, we
use the respective values of the Dutch marketsébural gas (TTH) and coal (ARA?).*
This data has been obtained from Datasttéahime sample contains data from January 2004
to November 2010, eliminating weekends and holiday®e converted the fuel prices into
Euro per calorific value measured in Megawatt (€/MyVto simplify interpretation. The
respective data sources for the three commodiie&érmany and the UK are summarized in

Table 2. Figure 1 depicts the series of spot pri€es

8 Bundeskartellamt (2011, p18).

® According to National Grid: British Energy (18%),0n (13%), SSE (12%), RWE (10%), Edf(9%), DRAX
(7%), Scottish Power (6%), International Power (%% Centrica (5%)

1 MWhe stands for one Megawatt hour of electric energy.

1 TTF stands for Title Transfer Facility, a virtuedding point for natural gas in the Netherlands.

2 CIF ARA coal prices (CIF refers to Cost, Insuraacel Freight and ARA refers to Amsterdam, Rotterdam
Antwerp).

131t should be noted that gas and especially cdakgrin Germany should exceed Dutch fuel pricesdiye
constant because of transportation costs.

¥ Thomson Datastream is a commercial financialsttesil database.

5 This has the positive side-effect of significagductions in weekly seasonalities.

6 Datastream derives the daily coal price notatispgonverting the monthly coal prices in dollargifEuros
using the daily exchange rate. Thus, the increaBiollpr-Euro exchange rate limited the effect @lirg coal
prices for European coal consumers.



Figure 1: Development of the spot price series 202010 (in €/ MWh)
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3 Model

As mentioned, electricity is generated by a varatyechnologies. Since the differences of
marginal costs of power plants with the same teldgyare small compared to the cost
difference between dissimilar technologies, we approximate the marginal cost curve of

the entire electricity system via a stepwise fuort{isee Figure 2.

Figure 2: Stylized example of the stepwise marginalost function'®
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In detail, we can model the electricity price atéit as the marginal cost of the last required
technology to meet demand. In the short run, tis¢soof a plant should correlate closely with
its fuel and emission costs. Since the fuel efficieof technologies changes rather slowly,
fuel and emission costs are predominantly detemninethe respective prices. Thus, we can
create a time series model that endogenously itiiergost structures of each class of power
plant and deduces which class of power plant isgmar at each point. This methodology

requires data on fuel, emission and electricitggmionly.

" Typical non-dispatchable, must-run generationudek wind, run-of-river hydro and combined heat and
power plants (in winter).

8 The error term might be positive or negative. @opently the marginal cost might in some caseswerl

(base and coal in the stylized representation)giren (gas and spike in the stylized representatitan the sum

of fuel, emission and other variable cost.



Generally, our model consists of two proceduresiugine that decides which class of power
plants sets the price (i.e., is marginal) and ahaeism that reproduces the electricity price
formation for each class. For each technology reffig =1,2,....m we assume the marginal

costs at timetJ1...T to be the sum of a state dependent stochastic @wenp and a state

dependent weighted linear combination of khexplanatory variables. That is, the weighting

vector 8 depends on the marginal technology in timeérhus, the weighting vector specific

for the technology state (i.e., the vector that applies for dllwhere S =i) is denoteds, .
The state dependent stochastic component in tifioe the technology state is denotedg; .

The set of explanatory variables stored in theows of the matrixX,; may contain, for
example, a constant, a time trend and differentrdymariables, as well as gas, oil, coal and
emission certificate priceS. Depending on the chosen explanatory variables ted

technologies, the model can be written as

Bix X +é&, S=1

. L, XX, +¢& =2
prlcef' — 2 t t,2 S 1)

B XX +&, S =m

When the process that determines the marginal tdoty at timet is assumed to be

Markoviarf* and &;; is assumed to be independent and identically nodisfributed in each

technology state, (1) can be estimated using a Markov Switching rBegjon. We first
convert the model into state space form with tlagest (or regimes) representing the different

technologies. To make the model computable, we ifspabe transition matrix as

Prob(S =i|S., =j)=p,,, i.e. with time invariant exogenous switching mablities?

¥ The terms state, regime, technology and technalegiyne are used synonymously.

% The notionl: T, here and in the remainder of the paper, refetise@orresponding element at all discrete time
points betweert =1 andt =T .

2 A Markov process is characterized by the fact thatlikelihood of a given future state, at anyegivnoment,
depends only on its present state, and not on astyspates.

2 Including demand and weather conditions in thetching probabilities could improve the estimation;
modeling switching cost as threshold variablesha dtate-equation may make the estimates even nealistic.
However, the problematic implementation is leffudher research.

8



Thus, the model is fully described by

price” = Bs x X, + £ 4 (2a)
S=1l.m (2b)
Prob(§ =i|S,=j)=p,, O 1<i,jsm 3)

where X, is thet™ column of the kxT ) matrix X,; of explanatory variables ands is the

state dependenti¢k) row vector Bs 1 Bs 21--Ps x, Where Bs « is the coefficient for the™

explanatory variable).

The presented stylized merit order (see Figuren®lies that there are only four types of
power plants with different cost structuréd.he marginal cost for each technology depends
only on the fuel consumption, emissions and noh-faeiable costs. Thus, the explanatory

variables are: a constant, the coal price, thepgae and the emission allowance price. We

can impose certain zero restrictions 8g because the marginal cost of coal plants shouid no

depend on the gas price. The interpretation of thmaining coefficients is then
straightforward. The constant represents the nehfariable cost of this type of plant. The
fuel coefficient for the used fuel is the inverdettte heat rate of the plant (when electricity
price and fuel price are both measured in the samtei.e. €/ MWh). The coefficient for the
emission certificate prices represents the amofiehissions per unit of electricify.When
interpreting the results, we must bear in mind tiratdo not address the endogeneity problem
(i.e. we ignore the fact that gas and emissionwalie prices also depend on electricity
prices) and the number of states selection prolfiemwe ignore that the “real” number of

states might be different from our choice).

Our non-linear model makes it difficult to dedudeedretically the distribution of the
parameters conditioned on the data. Thus, we nelyhe approach by Schweri (2004) who
proposes to address this issue by using the Ginpling techniqué’ The general idea of
Gibbs sampling is to repeatedly draw each paranceteditioned on the data and on all other

parameters. This procedure is iterated many timlesys conditioned on the latest draws of

% Must-run generation like wind and run-of-river hgdare not included since they can be considered as
reduction of net electricity demand.

24 The units match accordingly: €/ MWk €/MWh+MWhe/MWhxE/MWhy; +tCO/MWhex€CO,

% See Krolzig (1997, p.148ff).



the other parameters. To estimate (2) and (3) WdbsGsampling, the density functiog|(°)
has to be separated. Schweri (2004) proposes ltbeiiiog dissection:

g(%_-'rnﬂsK )0-3K ' p|,j | pricq(?lT’)(l'T)=

olBs .o | prices, X1, S Ja(p,, 15 )a(Siy | pricesr, X, ) @

According to the dissection in (4) the distributiohthe parameters conditioned on the data
can be deduced using the four steps proposed weSc{2004, p.34ff):

1) Deduceg(S; | price. X,;) from g(S; | price%, X,r) and o(S | S..., prices, X, )
by backward iteration. Therebyg(S|S+1, priceft',Xl.T) is calculated from

g(& | pricef, Xn) which is obtained from the Hamilton filter.
2) Draw the beta-distributed switching probabilities givenS;; .
3) Draw thefs. given price, X, , S and s .

4)  Draw theds givenfs, , S+, pricel; and Xy;.

A detailed description of the steps and its tecnimplementation appears in Schweri (2004,
p.33-54) who also provides the corresponding Mattzde®

%As the author was unable to find any other impletaion of a Bayesian Markov Switching
Vectorautoregression in the literature he had gokdled on the excellently documented Matlab cpdevided
in the diploma thesis by Urs Schweri (2004). Theéhodology used in this paper reproduces the regime
switching model without Kalman Filtering of Schw¢2004, p.33-54). The author would like to thanis Ur
Schweri for his welcoming reply to arising question

10



Table 3: Dimension and notation of variables useciithe Markov-Switching Model

Variable Dimension Explanation

pricef' scalar Explained variable: electricity price series

t scalar time index

S scalar Indicator of the regime in time

k scalar number of explanatory variables

m scalar number of states

T scalar termination date

b, scalar probability to switch from staté to state] .

X, kx1 vector of explanatory variables at tinhe(constant, considered
fuel and emission price series)

Bs 1xk state dependent coefficient vector

& scalar state dependent error term

s scalar state dependent error variance

The described estimation strategy features cedt@wbacks:

(1) Due to the definition of prior expectations,ttfmight) drive the posterior distribution
of the parameters, the results are not purely diatan (Schweri, 2004, p.29)

(2) The assumptions on the distribution of errom®K independent, identical distributed)
are not met for all time series.

(3) The results might depend on the selection ofistavalues.

(4) For small numbers of draws the results are taiils and there is no final certainty
that the model converged to the global maximum.sTta high number of draws
(100,000) is chosen which make the estimation caatiomally burdensome (about
two hours for a single electricity price seriedioé years).

Despite these caveats, the presented estimatiategyris well suited to estimate the

described model. As discussed in Krolzig (1997,79)1lin contrast to the Expectation

Maximization approach the Gibbs sampling approacviges the posterior distribution

of the parameters. Furthermore, it allows the isidn of prior knowledge which is

essential for our modeling strategy (see next@ekti

11



A4 Results

(a) Estimation Results

To estimate (2) & (3), a sensible choice of theemhejent variable (i.e. the electricity price
series) is crucial. As demand is highly volatileotighout the day, we may expect that up to

five regime switches (nuclear->coal->gas->coal-¥@ai) occur every day. Using a

continuous hour-by-hour series is inadequate becaegime persistency(;>>p ;) is

required for stable estimates. Thus, it is prefieréd divide the continuous series into 24 day-
by-day series, each of which represents one hamneMer, we note that estimating (2) & (3)

for 24 (or even 48) series is impractical becausie similarity of some series (e.g? and

4™ hour data), and the estimation procedure is coatipmally burdensome. We can reduce
the 24 or 48 hourly price series to two series dilidretain most information by drawing on a

weighted average of on-peak (8am-8pm) and off-p@guhn-8am) prices. We obtain the

optimal weighting vector (in terms of variance eped) by Principal Components Analysis
(PCA)?" Then we exclude dates with electricity prices ab@00€/MWh because such

extreme price spikes could distort our analysis aadnot be explained by fuel cost

fundamental€®

We estimate (2) & (3) for the off-peak and on-peakies for the German (EEX) and the
British (UKPX) markets. In all four cases (EEX gitak, EEX on-peak, UKPX off-peak and
UKPX on-peak), we apply a model in which spot eieityy prices are explained by spot gas
prices, spot coal prices and the respective enmsdlowance price. We omit oil prices and a
trend after our initial estimations have suggedted they are not significant for any state.

Variance and alp coefficients are selected to be state deperfdéiat.capture the effect that

% Principal Component Analysis was developed to fmake linear combinations of the elements of tharans
of a data matrix that explain the majority of theriance of the data. A standardized linear comhinats a
weighted averagedX X ) of the columns ofX whered is a vector of length one. Maximizing the variamte
J'X leads to the choic® = y;, the eigenvector corresponding to the largestrwigiee A, of the Covariance
Matrix. This is a projection oX into the one-dimensional space, where the compsr#nX are weighted by
the elements of,. Y, =A,'(X — 1) is called the first PC. This projection can beayaiized to the second, third,
and @' PCs by using the second, third, afidgrgest eigenvalues and their corresponding eiggtovs. For the
technical details see, for example, Haerdle anda6{2003).

% Even burning expensive oil (95€/barrel) in an fiogfnt generator (heat rate of 30%) would onlytifys
marginal cost of below 200€/MWH0.625 barrel/MWh x 3.3 MWh/MWh, x 95 €/barrel). For the modeling
of electricity price spikes, see Lang and Schwa@ny).

2 Note that state dependent variance is straightfatvgince high electricity price regimes are charied by
higher variance.

12



switching from one marginal technology to anothetyooccurs when demand or supply
conditions change significantly, we predefine sqaesistency®

Choosing the number of states is based on goodridisinterpretability with respect to the
stylized merit order; and comparability. We measgm®dness-of-fit using the Schwartz
information criterion, which suggests that eithree or four regimes are appropriate,
depending on the cadeThe assumed stylized merit order suggests thae thee three
regimes in off-peak (base, coal, gas) and threenegin on-peak (coal, gas, spike). For ease

of presentation and comparability, we use the tistate specification.

Table 4: Results of the switching regression withan-informative priors

| freq | BConstant | BCoaI | BGas | BCOZ | Mean | o2
Germany off-peak (R2=81%)
Statel 42% -2,40 1,54 0,94 0,56 32,3 25
State2 449 -0,50 1,68 1,20 0,67 39,8 15
State3 149% 27,10 -1,09 1,55 0,02 49,3 175
Germany on-peak (R?=81%)
Statel 51% 2,10 1,73 1,28 0,74 41,1 45
State2 33% 18,30 1,31 1,76 0,48 67,0 90
State3 16% 61,50 0,95 1,54 0,30 | 110,0] 811
UK off-peak (R2=93%)
Statel 78% 1,20 1,33 1,13 0,69 344 9
State2 219 10,60 2,55 0,75 0,32 65,0 64
State3 1% 98,70 4,76 1,54 -5,10 | 80,1 36
UK on-peak (R?=88%)
Statel 62% 0,50 2,02 1,38 0,82 44,1 26
State2 239 8,10 2,67 1,66 0,748 71,0 94
State3 15% 52,30 2,02 1,56 0,34 | 121,6] 59(
Bold empirical parameters are significantly differ&om zero.
Freq = relative frequency that statead the highest probability.

The model is first estimated imposing (almost) mminformation on the parameters,
switching probabilities and variances. Thereforgrpmean and starting values of the model

parameters are set according to Table 8 (see Appeifithe estimation results for the three-

% The probability of remaining in the current statas set to 0.67 whereas the probability of switghio

another state was adjusted to 0.16. Giving the primodest variance of approximately 0.1 implies the beta-
distribution of the p- values is set to;i= 2 and w= 1 on the main diagonal and 11 and u = 6 beyond the
main diagonal.

% The Schwartz Information Criterion has been calmd for each case for one to four regimes usingpdel

specification with non-informative priors for thatge sample. While the Schwartz Information Cigarfavors

a three-regime specification for the UK off-peake&aa four-regime specification is preferred foiotéther cases.
This reflects the higher diversity of the Germafimdak generation structure and must be borne idmihen

interpreting the results.
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state model with non-informative priors (see TaW)esuggest that the regime-switching
model adequately captures the electricity pridésst, the R is above 80% for all series.
Second, the model performs significantly better than sivegle- state modelhird, almost all
empirical parameters are significantly differendbnfr zero. Despite this evidence, in other
respects the model with non-informative prior’s idéys markedly from the assumed stylized
merit order as certain states ovetfapnd cannot clearly be attributed to the assumed

technologies. Moreover, the occurrence of negatarameters is not explained.

Using informative priors, it is possible to induoedel outcomes that are plausible with
respect to the stylized merit order. In all fouses (EEX off-peak, EEX on-peak, UKPX off-
peak and UKPX on-peak), certain parameters aretreamsd to zero by applying tight prior
distributions with mean zer8.Setting the mean and variance for the prior distion of the
parameters as well as the starting values accotdingable 9 (see Appendix), the model is
estimated using the described procedtiréhis selection ensures that in each case three
technology regimes (off-peak: base, coal and gagieak: coal, gas and spike) exist that can
be clearly distinguished. The coal and gas pricarpater priors, for example, imply that each

fuel is only significant in the corresponding regim

% In three of the four cases, the coefficients deast two regimes cannot clearly be distinguishecause the
95% confidence intervals for all of their coeffiote overlap. This occurs for Germany off-peak (EtaState2)
and UK peak (Statel~State?).

¥ In each of the steps, the posterior distributi@@yp is given by the likelihood function @fy) times the prior
distribution g0): p®]y)= g®) x L(O]y).

* Due to the identification restriction, the sortiofjthe no-fuel state is crucial. Setting it as fingt state implies
that it has the lowest constant of all states,Itieguin a baseload state.

14



Figure 3: Posterior parameter density for the UK of-peak case (informative priors)
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The estimation results (see Table 5) indicate adgdfib and the estimated regime
characteristics allow us to make a straightforwarterpretation. First, each state can
meaningfully be attributed to a unique technoldggcond, the estimated parameters are in an
intuitive order of magnitude. In all four cases, nate that the coal coefficient in the coal
state is always larger than the gas coefficienthen gas state, and the emission allowance
price has a stronger influence on the coal sttied, almost all posterior parameter densities
have a single maximum and are approximately noynhditributed. This is illustrated in the
UK off-peak example in Figure 3 where none of thetprior parameter distributions has two

maximas®

Each of the four technology regimes (base, coal,agal spike) feature unique characteristics.
In the base regime, electricity prices depend on both fuel prices @amiission allowance
prices. Whether the gas and coal price dependeanebe explained by ramping and
balancing costs that figure into the marginal aufstypical baseload plants (nuclear, wind,
lignite) or whether the dependence is due to enuaige (e.g., baseload electricity as a
substitute for coal and gas) or another sourceooklation between different energy sources
cannot be determined. In the UK and Germany dbed states feature highly significant
influences of coal prices, insignificant influence$ gas prices and highly significant

influences of emission allowance prices. As expktie empirical emission allowance price

% The results for all other cases may be obtaineuh the author upon request.
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parameter for theoal state is higher than that for thgas state. In thegas state, all but the
coal price coefficients are significantly positivEhe empirical gas price parameters vary
between 0.73 and 2.14, and the empirical emisdlowance price parameters between 0.46

and 0.76. Finally thepike state is characterized by high prices and high variance.

Table 5: Results of the switching regression witmformative priors

| freq | BConstant | BCoaI | BGaS | BCOZ | Mean 62
Germany off-peak (R2=83%)
State “Base” 379 1,50 0,80 1,04 0,53 34,0 51
State “Coal” 30%9 4,90 2,62 0,01 090 | 31,6 11
State “Gas” 33% 7,90 0,00 1,82 0,46| 48,3 47
Germany on-peak(R2=82%)
State “Coal” 47% 1,30 3,70 0,01 1,10 | 40,4 44
State “Gas” 40% 19,30 0,00 2,14 0,60 651 137
State “Spike” 13% 96,70 1,02 0,34 0,13 118,3] 709
UK off-peak (R2=91%)
State “Base” 679 -0,4( 1,49 1,16 0,67] 36,1 9
State “Coal” 21% 4,20 2,65 0,01 1,35 | 40,2 5
State “Gas” 12% 34,10 0,01 0,73 0,65| 68,8 | 148
UK on-peak (R2=83%)
State “Coal” 3699 1,80 3,66 0,01 1,20 | 411 19
State “Gas” 45% 16,40 0,00 1,82 0,76 559 | 105
State “Spike” 19% 87,60 -0,52 0,77 0,97| 1140| 678
Bold empirical parameters are significantly diffiet from zero.

However, there are some limitations to the res#lisst, it is difficult to explain that despite
the straightforward identification of technology gmaes, the cost structures of the
technologies are unstable across countries and peaidds. For example, the empirical
parameter for gas in the UK gas states (off-peak3,Qpeak: 1.82) do not overlafiecond,
some coefficients are far “off” their expected \eduFor example, the inverse heat rate of a
gas- fired plant should be somewhere around 2.6tHeuestimated values are significantly
smaller. Third, the assumption of normality for the residuals ms rejected for some

regimes®.

There are two potential explanations for the déwest of the estimation results from

expectations: either the model is misspecified wilpect to the real marginal cost of

% The different tests lead to very different resultéhile the Kolmogorov-Smirnov test only rejects tiormality
hypothesis for the gas state in the UK on-peak mnaidine 5% significance level, the Jarque-BeratTejscts
normality for nine of the 12 cases. This indicathaf the residuals might be close to normal attre of the
distribution while they feature heavy tails.
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electricity production, and/or the underlying asgtion that electricity prices are based on
marginal cost is incorrect. While the first explaoa probably holds to some degréehere
are reasons to believe that the second explaniatiaiso plausible. Since the cost structure of
a national power generation system is rather stablgertemporal and international
comparison of the model outcomes allows us to tthekdifferences in the deviations of

electricity prices from marginal cost.

(b) Intertemporal and international comparison of price formation

The goodness-of-fit of our model is better in thK W off-peak (see Table 6). Using the
Wilcoxon rank sum te&t we find that the median absolute errors are fiagmitly larger in

the German case.

Table 6: Goodness-of-fit (R2) of the regime switchg model with informative priors

Germany UK Wilcoxon rank sum test reséts
on-peak 82% 83% 2,505,203
off-peak 83% 91% 2,686,014

Figure 4 depicts the marginal state for every paintime as estimated in the model with
informative priors for the UK off-peak case. What striking about this example is the
dominance of the gas regime in the years 2004, 20072010. Thus we are able to track the
fuel switching due to high emission certificatecps, lower baseload generation margins
produced by increasing baseload demand and/orasegebaseload generation capacities.

% One cannot expect that a stochastic model witlerg parsimonious specification can completely tréwk
marginal cost of a complex electricity systemsiltikely that increasing the number of technolodies, states)
and including more data (e.g. demand) could imptbeeoutcomes.

% For details on the Wilcoxon rank sum test see fideand Wilson (2002, p.588ff).

% We test the null hypothesis that the median ofafhsolute value of the residuals for the Germanthad
British model are identical. The three stars inttidhat the null hypothesis is rejected on the $8§nhificance
interval. Note that the variance of both price eehave been approximately similar.
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Figure 4: Regime probabilities for the UK off-peakcase (informative priors)
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.5 Conclusion

The presented model is able to reproduce the rearlimteraction of fuel, emission allowance
and electricity prices in the UK and Germany. Adtreommodity options are quite common
in electricity markets (e.qg., dark spread, spaneagp and clean spread options) the ability of
this modeling strategy to statistically represét ¢o-movements of these commodities could

prove helpful for evaluating corresponding options.

In the context of analyzing strategic behavior e tpower sector, the responsiveness of
electricity prices on fuel price shocks is an imadic that can be easily compared across
countries. We deduce from our analysis, that theoffipeak prices are much closer linked to
fuel prices (91% of the variance explained) than@erman off-peak prices (83%). However,
the different reasons for this divergence cannsilyebe separated. Thus, the higher shares of
renewable electricity generation and lignite in i@any, the stronger integration of Germany
into the European market and a higher market cdratén in Germany might be among the

reasons for the observed differences.
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Of course more research is needed and model extesnare desirable. For example, making
regime switching conditional to electricity demaowould improve forecastS.And, making
electricity prices in each regime mean revertingd(¢hus the process autoregressive) — and

each regimes mean conditional on fuel prices cultier enhance performance.

40 Janczura and Weron (2010).
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Appendix

Table 7: Result of the ordinary least square moddbr the electricity price

UK off-peak UK on-peak German off-peak German on-peak
(R?=89%) (R2=73%) (R?=68%) (R2=57%)
beta tstat beta tstat beta tstat beta tstat

Beonst -5.3 -11.2 -25.1 -16.5 1.1 1.6 -10.3 -5.8
Booal 2.8 45.5 4.4 24.3 1.2 121 1.6 7.0
Bees 1.0 52.5 2.4 38.2 1.3 27.6 2.9 26.3
Beoz 0.7 40.4 0.8 14.5 0.5 19.7 0.7 10.3
Bold coefficients are significantly different frorero.

Table 8: Prior mean and starting values of the modewith non-informative priors

State 1 State 2 State 3

Beonst 5 10 15

ﬁooal 1 1 1
| Poas 1 1 1

Peoz 1 1 1

Table 9: Prior mean (prior variance) and starting values of the model with informative priors

off-peak on-peak
Base Coal Natural Gas Coal Natural Gas Spike

Beons 5 (10) 10 (10) 15 (10) 5 (10) 10 (10) 100 (10)
Beoal 0 3(1) 0 (.0001) 3(1) 0 (.0001) 0

| Soas 01 0 (.0001) 2 (1) 0 (.0001) 2(1) 0(1)
Bz 0(1) 1(3) 1(@3) 1(1) 1() 0(1)
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