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Abstract 

In this paper a novel electricity price model is developed and applied. We
reproduce  the  merit  order  of  a  thermal-dominated  electricity  system  by
establishing a non-linear dependency of wholesale electricity prices on the
prices of fuels (coal and natural gas) and of CO2 emission allowances. The
coefficients  are  estimated  using  a  Markov  Switching  Regression.  This
allows to study the nonlinear interaction between fuel and electricity prices.
Consequently,  this  approach  might  prove  valuable  for  cross-hedging
positions in the fuel, electricity and emission spot markets. It is also of use
for studying, to which decree electricity prices in different countries reflect
fuel  cost.  Applying  the  model  to  the  electricity  markets  of  the  UK  and
Germany we find that British electricity prices are quite well explained by
short-run cost factors while German are less so.
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.1 Introduction 

Electricity markets differ  from other commodity markets in various respects.  Demand for

electricity is inelastic in the short term, storing it is expensive, parts of the value chain exhibit

characteristics of natural monopolies and reliable electricity supply has high macroeconomic

importance. In addition, electricity might be produced by a set of different technologies each

of which being characterised by different marginal cost. 

With the emergence of electricity spot markets, the statistical behavior of the prices attracted

the attention of  speculators,  arbitrageurs  and risk managers,  not  least  because future and

option contracts are usually settled at the spot price. This opened a new field of study for

financial  mathematics,  and  it  soon  became  obvious  that  electricity  prices  behave  very

differently from prices for physical commodities. Important findings include the observations

that  prices  mostly  contain  no  unit  root  (Lucia  and  Schwartz  (2001),  Worthington  et  al.

(2005));  exhibit  mean  reverting  behavior  (Cartea  and  Figueroa  (2005));  feature  strong

seasonalities;  high  volatility;  fat  tails;  and  long memory  behavior  (Haldrup  and  Nielsen

(2006)). Sophisticated stochastic models for electricity prices were developed based on the

observed  characteristics.3 Weather,  fuel  prices,  emission  allowance  prices,  available

generation capacities, imports, transmission congestion, market structure and the national fuel

mix  are  key explanatory  variables  for  price  behaviour.  Those factors  differ  substantially

between markets and thus electricity price models are often only suitable for a specific power

exchange.

Due to certain specifics of electricity prices – e.g., strong heteroscedasticity and pronounced

price  spikes  –  Markov  regime  switching  models  have  gained  quite  some popularity  for

modeling electricity prices.4 These models allow to capture spikes in the price levels and

variance regimes. Thus, price and volatility forecasts for electricity prices can be significantly

improved. Furthermore, Markov regime switching models allow to make electricity prices in

different regimes conditional to different linear combinations of fuel and emission allowance

prices.5 This  makes  it  possible  to  econometrically  represent  the  well  known  non-linear

relationship between the different price series. Consequently, corresponding models can be
3 Haldrup and Nielsen (2004) for example find a regime switching long memory model to adequately forecast 
spot prices in the Nordic market. Periodic heteroskedastic autoregressive fractionally integrated moving average 
model models were proposed by Carnero et al. (2007), and Cartea and Figueroa (2005) suggests jump diffusion 
models. Overviews of the relevant literature can be found in Bunn (2004), Knittel and Roberts (2004) and 
Skantze and Ilic (2001).  
4 For an overview see Janczura and Weron (2010).
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used to better predict electricity prices, optimize portfolios consisting of electricity contracts,

fuel contracts and emission allowances or compare the price formation in different countries.

To our  knowledge this paper  is  the application of  a Markov  regime switching model  to

represent the merit order. The next section introduces the data for the UK and Germany used

in  our  model:.  Section  3  presents  the  model,  Section  4  presents  the  results  and  an

interpretation, and Section 5 concludes. 

.2 Data 

The German and UK electricity systems are comparable in size (see Table 1). Conventional

thermal power plants account for most of the electricity generation (62% in Germany and

78% in the UK). One obvious difference is that the UK does not use lignite for which it

compensates by an increased share of natural gas. 

Table 1: Gross electricity generation (2007)

Germany UK
Annual gross electricity generation 637 TWh 396 TWh
    Coal 47% 35%
    Oil 2% 1%
    Gas 13% 42%
    Nuclear 22% 16%
    Renewables 15% 5%
    Other 1% 1%
Source: Eurostat6

Both countries’ wholesale markets are particularly suited to our model. First, neither market

is endowed with significant hydropower capacity. This is an advantage because our model is

unable  to  reproduce  the dynamic  opportunity  cost  assessment  required  for  analyzing  the

marginal cost of a hydro plant.  Second, both markets provide reference prices. Hourly spot

electricity prices for Germany are obtained from the EEX (prices are formed by day-ahead,

two-side, one-shot, sealed-bid uniform-price auctions). By contrast, half-hourly spot prices at

the UK Power Exchange (UKPX) are obtained in 48-hour continuous trading until a half-hour

ahead of delivery.7 However, both countries differ markedly in market structure and design.

While the UK has two decades of experience with market opening and regulation, Germany

only  addressed sector  reforms in  the first  part  of  this  decade,  and established a national

5 In section 3 we explain that such a formulation essentially is a stylized representation of the fundamental merit 
order.
6 The data were retrieved from Eurostat [http://epp.eurostat.ec.europa.eu].
7 Most of the high-frequency price and volume data employed in this dissertation were not freely available, but 
could only be obtained upon request from the corresponding data providers. The usage rules did not allow a 
publication of the original data in this dissertation.
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regulator in mid-2005. The four privately owned transmission system operators in Germany

retain  significant  stakes  in  generation  (together  80%  of  total  capacity  in  20098)  and

distribution.  The integration of the two major German players,  E.on and RWE, and their

natural gas affiliates enhances their dominance. The situation in the UK, on the other hand, is

more balanced. The transmission system operator (TSO) is unbundled and national regulation

is  effective.  The six biggest  generation  companies together  were in 2007 responsible for

around 69% of the electricity production.9 Although they are integrated with electricity and

gas suppliers, no one has a position comparable to the “big four” in Germany.

Table 2: Summary of the data sample (working days January 2004 - November 2010)

Germany United Kingdom
Unit Source Mean Variance Source Mean Variance

Electricity off-peak €/MWhel EEX 38.0 348 UKPX 40.9 345
Electricity on-peak €/MWhel

10 EEX 62.3 1682 UKPX 64.7 1764
Gas spot price €/MWhth TTF 16.9 36 NBP 17.5 69
Coal spot price €/ MWhth ARA 8.2 7 ARA 8.2 7
Emission allowance €/EUA EEX 12.1 79 EEX 12.1 79

Because our model is only meaningful  in the short and medium run, we used daily price

notations for all commodities. Since no daily German gas and coal prices were available, we

use the respective values of the Dutch markets for natural gas (TTF11) and coal (ARA12).13

This data has been obtained from Datastream14. The sample contains data from January 2004

to November 2010, eliminating weekends and holidays.15 We converted the fuel prices into

Euro per calorific  value measured in Megawatt  (€/MWhth) to simplify interpretation.  The

respective data sources for the three commodities for Germany and the UK are summarized in

Table 2. Figure 1 depicts the series of spot prices. 16

8 Bundeskartellamt (2011, p18).
9 According to National Grid: British Energy (18%), E.on (13%), SSE (12%), RWE (10%), Edf(9%), DRAX 
(7%), Scottish Power (6%), International Power (5%) and Centrica (5%)
10 MWhel stands for one Megawatt hour of electric energy.
11 TTF stands for Title Transfer Facility, a virtual trading point for natural gas in the Netherlands.
12 CIF ARA coal prices (CIF refers to Cost, Insurance and Freight and ARA refers to Amsterdam, Rotterdam, 
Antwerp).
13 It should be noted that gas and especially coal prices in Germany should exceed Dutch fuel prices by some
constant because of transportation costs.
14 Thomson Datastream is a commercial financial statistical database.
15 This has the positive side-effect of significant reductions in weekly seasonalities.
16 Datastream derives the daily coal price notations by converting the monthly coal prices in dollars into Euros
using the daily exchange rate. Thus, the increasing Dollar-Euro exchange rate limited the effect of rising coal
prices for European coal consumers.

5



Figure 1: Development of the spot price series 2004-2010 (in €/MWh)
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.3 Model

As mentioned, electricity is generated by a variety of technologies. Since the differences of

marginal  costs of power plants with the same technology are small  compared to the cost

difference between dissimilar technologies, we can approximate the marginal cost curve of

the entire electricity system via a stepwise function (see Figure 2).17

Figure 2: Stylized example of the stepwise marginal cost function18
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In detail, we can model the electricity price at time t  as the marginal cost of the last required

technology to meet demand. In the short run, the costs of a plant should correlate closely with

its fuel and emission costs. Since the fuel efficiency of technologies changes rather slowly,

fuel and emission costs are predominantly determined by the respective prices. Thus, we can

create a time series model that endogenously infers the cost structures of each class of power

plant and deduces which class of power plant is marginal at each point. This methodology

requires data on fuel, emission and electricity prices only.

17 Typical  non-dispatchable,  must-run generation  includes wind,  run-of-river  hydro  and  combined  heat  and
power plants (in winter).
18 The error term might be positive or negative. Consequently the marginal cost might in some cases be lower 
(base and coal in the stylized representation) or higher (gas and spike in the stylized representation) than the sum
of fuel, emission and other variable cost.
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Generally, our model consists of two procedures: a routine that decides which class of power

plants sets the price (i.e., is marginal) and a mechanism that reproduces the electricity price

formation for each class. For each technology regime19 1,2,...,mS t =  we assume the marginal

costs at time T1t ∈  to be the sum of a state dependent stochastic component and a state

dependent weighted linear combination of the k explanatory variables. That is, the weighting

vector β  depends on the marginal technology in time t . Thus, the weighting vector specific

for the technology state i   (i.e., the vector that applies for all t  where iS t = ) is denoted iβ .

The state dependent stochastic component in time t  for the technology state i  is denoted it ,ε .

The set of explanatory variables stored in the  k  rows of the matrix  TX :1  may contain, for

example, a constant, a time trend and different dummy variables, as well as gas, oil, coal and

emission  certificate  prices.20 Depending  on  the  chosen  explanatory  variables  and  the

technologies, the model can be written as 













=+×

=+×
=+×

=

mSX

SX

SX

price

tmttm

ttt

ttt

el
t

,

2,2

1,1

2

1

εβ

εβ
εβ

⋮
(1)

When  the  process  that  determines  the  marginal  technology  at  time  t  is  assumed  to  be

Markovian21 and it ,ε  is assumed to be independent and identically normal distributed in each

technology state  i ,  (1)  can be estimated using a Markov Switching Regression.  We first

convert the model into state space form with the states (or regimes) representing the different

technologies.  To  make  the  model  computable,  we  specify  the  transition  matrix  as

( ) jitt pjSiSProb ,1| === − , i.e. with time invariant exogenous switching probabilities.22 

19 The terms state, regime, technology and technology regime are used synonymously.
20 The notion T:1 , here and in the remainder of the paper, refers to the corresponding element at all discrete time
points between 1=t  and Tt = .
21 A Markov process is characterized by the fact that the likelihood of a given future state, at any given moment,
depends only on its present state, and not on any past states.
22 Including  demand  and  weather  conditions  in  the  switching  probabilities  could  improve  the  estimation;
modeling switching cost as threshold variables in the state-equation may make the estimates even more realistic.
However, the problematic implementation is left to further research.
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Thus, the model is fully described by 

tt SttS
el
t Xprice ,εβ +×=  (2a)

mSt ...1= (2b)

( ) mjipjSiSProb jitt ≤≤∀=== − ,1,| ,1 (3)

where tX  is the tht  column of the ( Tk × ) matrix TX :1  of explanatory variables and 
tSβ is the

state dependent ( k×1 ) row vector ( kSSS ttt ,2,1, ,..., βββ , where kSt ,β  is the coefficient for the thk

explanatory variable). 

The presented stylized merit order (see  Figure 2) implies that there are only four types of

power plants with different cost structures.23 The marginal cost for each technology depends

only on the fuel consumption, emissions and non-fuel variable costs. Thus, the explanatory

variables are: a constant, the coal price, the gas price and the emission allowance price. We

can impose certain zero restrictions on 
tSβ  because the marginal cost of coal plants should not

depend  on  the  gas  price.  The  interpretation  of  the  remaining  coefficients  is  then

straightforward. The constant represents the non-fuel variable cost of this type of plant. The

fuel coefficient for the used fuel is the inverse of the heat rate of the plant (when electricity

price and fuel price are both measured in the same unit, i.e. €/MWh). The coefficient for the

emission certificate prices represents the amount of emissions per unit of electricity.24 When

interpreting the results, we must bear in mind that we do not address the endogeneity problem

(i.e. we ignore the fact  that gas and emission allowance prices also depend on electricity

prices) and the number of states selection problem (i.e. we ignore that the “real” number of

states might be different from our choice).

Our  non-linear  model  makes  it  difficult  to  deduce  theoretically  the  distribution  of  the

parameters conditioned on the data. Thus, we rely on the approach by Schweri (2004) who

proposes to address this issue by using the Gibbs sampling technique.25 The general idea of

Gibbs sampling is to repeatedly draw each parameter conditioned on the data and on all other

parameters. This procedure is iterated many times, always conditioned on the latest draws of

23 Must-run generation like wind and run-of-river hydro are not included since they can be considered as a
reduction of net electricity demand.
24 The units match accordingly: €/MWhel = €/MWhel+MWhel/MWhth×€/MWhth+tCO2/MWhel×€/tCO2
25 See Krolzig (1997, p.148ff).
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the other parameters. To estimate (2) and (3) via Gibbs sampling, the density function ( )•g

has to be separated. Schweri (2004) proposes the following dissection: 

( )
( ) ( ) ( )T

el
TTTjiTT

el
TSS

T
el
TjiSST

XpriceSgSpgSXpriceg

XpricepSg

tt

tt

:1:1:1:1,:1:1:1

:1:1,:1

,||,,|,

,|,,,

σβ

σβ =
 (4)

According to the dissection in (4) the distribution of the parameters conditioned on the data

can be deduced using the four steps proposed in Schweri (2004, p.34ff): 

1) Deduce ( )T
el
TT XpriceSg :1:1:1 ,|  from ( )T

el
TT XpriceSg :1:1 ,|  and ( )T

el
ttt XpriceSSg :1:11 ,,| +

by  backward  iteration.  Thereby  ( )T
el
ttt XpriceSSg :1:11 ,,| +  is  calculated  from

( )T
el
tt XpriceSg :1:1 ,|  which is obtained from the Hamilton filter.

2) Draw the beta-distributed switching probabilities jip ,  given TS :1 .

3) Draw the 
TSβ  given el

Tprice :1 , TX :1 , TS :1  and 
tSσ .

4) Draw the 
tSσ  given

TSβ , TS :1 , el
Tprice :1  and TX :1 .

A detailed description of the steps and its technical implementation appears in Schweri (2004,

p.33-54) who also provides the corresponding Matlab code.26 

26As the author was unable to find any other implementation of a Bayesian Markov Switching 
Vectorautoregression in the literature he had solely relied on the excellently documented Matlab code provided 
in the diploma thesis by Urs Schweri (2004). The methodology used in this paper reproduces the regime 
switching model without Kalman Filtering of Schweri (2004, p.33-54). The author would like to thank Urs 
Schweri for his welcoming reply to arising questions.
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Table 3: Dimension and notation of variables used in the Markov-Switching Model

Variable Dimension Explanation

el
tprice scalar Explained variable: electricity price series

t scalar time index

tS scalar Indicator of the regime in time t

k scalar number of explanatory variables
m scalar number of states
T scalar termination date

jip , scalar probability to switch from state i  to state j .

tX  1×k vector of explanatory variables at time t  (constant, considered
fuel and emission price series)

tSβ k×1 state dependent coefficient vector

tSt ,ε scalar state dependent error term

tSσ scalar state dependent error variance

The described estimation strategy features certain drawbacks: 

(1) Due to the definition of prior expectations, that (might) drive the posterior distribution

of the parameters, the results are not purely data driven (Schweri, 2004, p.29) 

(2) The assumptions on the distribution of error terms (independent, identical distributed)

are not met for all time series.

(3) The results might depend on the selection of starting values.

(4) For small numbers of draws the results are not stable and there is no final certainty

that  the model  converged to the global  maximum. Thus, a high number of  draws

(100,000) is chosen which make the estimation computationally burdensome (about

two hours for a single electricity price series of five years). 

Despite these caveats,  the presented  estimation strategy is well  suited to estimate  the

described model. As discussed in Krolzig (1997, p.175) in contrast to the Expectation

Maximization approach the Gibbs sampling approach provides the posterior distribution

of  the  parameters.  Furthermore,  it  allows the  inclusion  of  prior  knowledge  which  is

essential for our modeling strategy (see next section).
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.4 Results 

(a) Estimation Results 

To estimate (2) & (3), a sensible choice of the dependent variable (i.e. the electricity price

series) is crucial. As demand is highly volatile throughout the day, we may expect that up to

five  regime  switches  (nuclear->coal->gas->coal->nuclear)  occur  every  day.  Using  a

continuous  hour-by-hour  series  is  inadequate  because  regime  persistency  ( iip , >> jip , )  is

required for stable estimates. Thus, it is preferable to divide the continuous series into 24 day-

by-day series, each of which represents one hour. However, we note that estimating (2) & (3)

for 24 (or even 48) series is impractical because of the similarity of some series (e.g. 3rd and

4th hour data), and the estimation procedure is computationally burdensome. We can reduce

the 24 or 48 hourly price series to two series and still retain most information by drawing on a

weighted  average  of  on-peak  (8am-8pm) and off-peak  (8pm-8am) prices.  We obtain  the

optimal weighting vector (in terms of variance explained) by Principal Components Analysis

(PCA).27 Then  we  exclude  dates  with  electricity  prices  above  200€/MWh  because  such

extreme  price  spikes  could  distort  our  analysis  and cannot  be  explained  by  fuel  cost

fundamentals.28 

We estimate (2) & (3) for the off-peak and on-peak series for the German (EEX) and the

British (UKPX) markets. In all four cases (EEX off-peak, EEX on-peak, UKPX off-peak and

UKPX on-peak), we apply a model in which spot electricity prices are explained by spot gas

prices, spot coal prices and the respective emission allowance price. We omit oil prices and a

trend after our initial estimations have suggested that they are not significant for any state.

Variance and all β coefficients are selected to be state dependent.29 To capture the effect that

27 Principal Component Analysis was developed to find those linear combinations of the elements of the columns
of a data matrix that explain the majority of the variance of the data. A standardized linear combination is a
weighted average ( X'δ ) of the columns of X  where δ  is a vector of length one. Maximizing the variance of

X'δ  leads to the choice  1γδ = , the eigenvector corresponding to the largest eigenvalue  1λ  of the Covariance
Matrix. This is a projection of X  into the one-dimensional space, where the components of X  are weighted by
the elements of 1γ . )('11 µλ −= XY  is called the first PC. This projection can be generalized to the second, third,
and pth PCs by using the second, third, and pth largest eigenvalues and their corresponding eigenvectors. For the
technical details see, for example, Haerdle and Simar (2003).
28 Even burning expensive oil (95€/barrel) in an inefficient generator (heat rate of 30%) would only justify
marginal cost of below 200€/MWhel (0.625 barrel/MWhth x 3.3 MWhth/MWhel x 95 €/barrel). For the modeling
of electricity price spikes, see Lang and Schwarz (2007).
29 Note that state dependent variance is straightforward since high electricity price regimes are characterized by
higher variance.
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switching from one marginal  technology to another  only occurs  when demand or  supply

conditions change significantly, we predefine some persistency.30 

Choosing the number of states is based on goodness-of-fit; interpretability with respect to the

stylized  merit  order;  and  comparability.  We measure goodness-of-fit  using  the  Schwartz

information  criterion,  which  suggests  that  either  three  or  four  regimes  are  appropriate,

depending  on  the  case.31 The  assumed stylized  merit  order  suggests  that  there  are  three

regimes in off-peak (base, coal, gas) and three regimes in on-peak (coal, gas, spike). For ease

of presentation and comparability, we use the three-state specification. 

Table 4: Results of the switching regression with non-informative priors

freq βConstant βCoal βGas βCO2 Mean σ²
Germany off-peak (R²=81%)

State1 42% -2,40 1,54 0,94 0,56 32,3 25
State2 44% -0,50 1,68 1,20 0,67 39,8 15
State3 14% 27,10 -1,09 1,55 0,02 49,3 175

Germany on-peak (R²=81%)
State1 51% 2,10 1,73 1,28 0,74 41,1 45
State2 33% 18,30 1,31 1,76 0,48 67,0 90
State3 16% 61,50 0,95 1,54 0,30 110,0 815

UK off-peak (R²=93%)
State1 78% 1,20 1,33 1,13 0,69 34,4 9
State2 21% 10,60 2,55 0,75 0,32 65,0 64
State3 1% 98,70 4,76 1,54 -5,10 80,1 36

UK on-peak (R²=88%)
State1 62% 0,50 2,02 1,38 0,82 44,1 26
State2 23% 8,10 2,67 1,66 0,75 71,0 94
State3 15% 52,30 2,02 1,56 0,34 121,6 590
Bold empirical parameters are significantly different from zero. 
Freq = relative frequency that state i had the highest probability.

The model  is  first  estimated  imposing  (almost)  no  prior  information  on  the parameters,

switching probabilities and variances. Therefore, prior mean and starting values of the model

parameters are set according to Table 8 (see Appendix). The estimation results for the three-

30 The probability of remaining in the current state was set to 0.67 whereas the probability of switching to
another state was adjusted to 0.16. Giving the prior a modest variance of approximately 0.1 implies that the beta-
distribution of the pij - values is set to u1 = 2 and u2 = 1 on the main diagonal and u1 = 1 and u2 = 6 beyond the
main diagonal.
31 The Schwartz Information Criterion has been calculated for each case for one to four regimes using a model
specification with non-informative priors for the entire sample. While the Schwartz Information Criterion favors
a three-regime specification for the UK off-peak case, a four-regime specification is preferred for all other cases.
This reflects the higher diversity of the German off-peak generation structure and must be borne in mind when
interpreting the results.
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state  model  with  non-informative  priors  (see  Table  4)  suggest  that  the  regime-switching

model adequately captures the electricity prices.  First, the R2  is above 80% for all  series.

Second, the model performs significantly better than the single- state model. Third, almost all

empirical  parameters are significantly different  from zero.  Despite this evidence,  in other

respects the model with non-informative prior’s deviates markedly from the assumed stylized

merit  order  as  certain  states  overlap32 and  cannot  clearly  be  attributed  to  the  assumed

technologies. Moreover, the occurrence of negative parameters is not explained.

Using informative priors,  it  is  possible to induce model  outcomes that  are plausible with

respect to the stylized merit order. In all four cases (EEX off-peak, EEX on-peak, UKPX off-

peak and UKPX on-peak), certain parameters are constrained to zero by applying tight prior

distributions with mean zero.33 Setting the mean and variance for the prior distribution of the

parameters as well as the starting values according to Table 9 (see Appendix), the model is

estimated  using the described procedure.34 This  selection  ensures  that  in  each case three

technology regimes (off-peak: base, coal and gas; on-peak: coal, gas and spike) exist that can

be clearly distinguished. The coal and gas price parameter priors, for example, imply that each

fuel is only significant in the corresponding regime.

32 In three of the four cases, the coefficients of at least two regimes cannot clearly be distinguished because the
95% confidence intervals for all of their coefficients overlap. This occurs for Germany off-peak (State1~State2)
and UK peak (State1~State2).
33 In each of the steps, the posterior distribution p(θ|y) is given by the likelihood function L(θ|y) times the prior
distribution g(θ): p(θ|y)= g(θ) × L(θ|y).
34 Due to the identification restriction, the sorting of the no-fuel state is crucial. Setting it as the first state implies
that it has the lowest constant of all states, resulting in a baseload state.
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Figure 3: Posterior parameter density for the UK off-peak case (informative priors)
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The  estimation  results  (see  Table  5)  indicate  a  good  fit  and  the  estimated  regime

characteristics  allow  us  to  make  a  straightforward  interpretation.  First,  each  state  can

meaningfully be attributed to a unique technology. Second, the estimated parameters are in an

intuitive order of magnitude. In all four cases, we note that the coal coefficient in the coal

state is always larger than the gas coefficient in the gas state, and the emission allowance

price has a stronger influence on the coal state. Third,  almost all posterior parameter densities

have a single maximum and are approximately normally distributed. This is illustrated in the

UK off-peak example in Figure 3 where none of the posterior parameter distributions has two

maximas.35

Each of the four technology regimes (base, coal, gas and spike) feature unique characteristics.

In  the  base regime, electricity prices depend on both fuel  prices and emission allowance

prices.  Whether  the  gas  and  coal  price  dependence  can  be  explained  by  ramping  and

balancing costs that figure into the marginal cost of typical baseload plants (nuclear, wind,

lignite)  or  whether  the  dependence  is  due to  endogeneity  (e.g.,  baseload electricity  as  a

substitute for coal and gas) or another source of correlation between different energy sources

cannot  be determined.  In  the UK and Germany the  coal  states feature highly  significant

influences  of  coal  prices,  insignificant  influences of  gas  prices  and  highly  significant

influences of emission allowance prices. As expected the empirical emission allowance price

35 The results for all other cases may be obtained from the author upon request.
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parameter for the coal state is higher than that for the gas state. In the gas state, all but the

coal  price coefficients  are significantly positive. The empirical  gas price parameters  vary

between 0.73 and 2.14, and the empirical emission allowance price parameters between 0.46

and 0.76. Finally the spike state is characterized by high prices and high variance.

Table 5: Results of the switching regression with informative priors

freq βConstant βCoal βGas βCO2 Mean σ²
Germany off-peak (R²=83%)

State “Base” 37% 1,50 0,80 1,04 0,55 34,0 51
State “Coal” 30% 4,90 2,62 0,01 0,90 31,6 11
State “Gas” 33% 7,90 0,00 1,82 0,46 48,3 47

Germany on-peak (R²=82%)
State “Coal” 47% 1,30 3,70 0,01 1,10 40,4 44
State “Gas” 40% 19,30 0,00 2,14 0,60 65,1 137
State “Spike” 13% 96,70 1,02 0,34 0,13 118,3 709

UK off-peak (R²=91%)
State “Base” 67% -0,40 1,49 1,16 0,67 36,1 9
State “Coal” 21% 4,20 2,65 0,01 1,35 40,2 5
State “Gas” 12% 34,10 0,01 0,73 0,65 68,8 148

UK on-peak (R²=83%)
State “Coal” 36% 1,80 3,66 0,01 1,20 41,1 19
State “Gas” 45% 16,40 0,00 1,82 0,76 55,9 105
State “Spike” 19% 87,60 -0,52 0,77 0,97 114,0 678
 Bold empirical parameters are significantly different from zero.

However, there are some limitations to the results. First, it is difficult to explain that despite

the  straightforward  identification  of  technology  regimes,  the  cost  structures  of  the

technologies  are  unstable  across  countries  and  load periods.  For  example,  the  empirical

parameter for gas in the UK gas states (off-peak: 0.73, peak: 1.82) do not overlap.  Second,

some coefficients are far “off” their expected values. For example, the inverse heat rate of a

gas- fired plant should be somewhere around 2.5, but the estimated values are significantly

smaller.  Third,  the  assumption  of  normality  for  the  residuals  must  be  rejected  for  some

regimes36.

There  are  two  potential  explanations  for  the  deviations  of  the  estimation  results  from

expectations:  either  the  model  is  misspecified  with respect  to  the  real  marginal  cost  of

36 The different tests lead to very different results. While the Kolmogorov-Smirnov test only rejects the normality
hypothesis for the gas state in the UK on-peak model at the 5% significance level, the Jarque-Bera-Test rejects 
normality for nine of the 12 cases. This indicates, that the residuals might be close to normal at the centre of the 
distribution while they feature heavy tails. 
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electricity production, and/or the underlying assumption that electricity prices are based on

marginal cost is incorrect. While the first explanation probably holds to some degree,37 there

are reasons to believe that the second explanation is also plausible. Since the cost structure of

a  national  power  generation  system  is  rather  stable,  intertemporal  and  international

comparison of the model outcomes allows us to track the differences in the deviations of

electricity prices from marginal cost.

(b) Intertemporal and international comparison of price formation 

The goodness-of-fit of our model is better in the UK in off-peak (see  Table 6). Using the

Wilcoxon rank sum test38, we find that the median absolute errors are significantly larger in

the German case. 

Table 6: Goodness-of-fit (R²) of the regime switching model with informative priors

Germany UK Wilcoxon rank sum test results39

on-peak 82% 83% 2,505,203
off-peak 83% 91% 2,686,014***

Figure 4 depicts the marginal state for every point in time as estimated in the model with

informative  priors  for  the  UK off-peak  case.  What  is  striking  about  this  example is  the

dominance of the gas regime in the years 2004, 2007 and 2010. Thus we are able to track the

fuel  switching due to high emission certificate prices,  lower baseload generation margins

produced by increasing baseload demand and/or decreasing baseload generation capacities.

37 One cannot expect that a stochastic model with a very parsimonious specification can completely track the
marginal cost of a complex electricity system. It is likely that increasing the number of technologies (i.e., states)
and including more data (e.g. demand) could improve the outcomes.
38 For details on the Wilcoxon rank sum test see Freund and Wilson (2002, p.588ff).
39 We test the null hypothesis that the median of the absolute value of the residuals for the German and the 
British model are identical. The three stars indicate that the null hypothesis is rejected on the 99% significance 
interval. Note that the variance of both price series have been approximately similar.
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Figure 4: Regime probabilities for the UK off-peak case (informative priors)
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.5 Conclusion 

The presented model is able to reproduce the nonlinear interaction of fuel, emission allowance

and electricity prices in the UK and Germany. As multi-commodity options are quite common

in electricity markets (e.g., dark spread, spark spread and clean spread options) the ability of

this modeling strategy to statistically represent the co-movements of these commodities could

prove helpful for evaluating corresponding options.

In  the context  of  analyzing strategic behavior  in the power  sector,  the responsiveness of

electricity prices on fuel  price shocks is an indicator  that  can be easily compared across

countries. We deduce from our analysis, that the UK off-peak prices are much closer linked to

fuel prices (91% of the variance explained) than the German off-peak prices (83%). However,

the different reasons for this divergence cannot easily be separated. Thus, the higher shares of

renewable electricity generation and lignite in Germany, the stronger integration of Germany

into the European market and a higher market concentration in Germany might be among the

reasons for the observed differences.
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Of course more research is needed and model extensions are desirable. For example, making

regime switching conditional to electricity demand could improve forecasts.40 And, making

electricity prices in each regime mean reverting (and thus the process autoregressive) – and

each regimes mean conditional on fuel prices could further enhance performance. 

40 Janczura and Weron (2010).
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.6 Appendix 
Table 7: Result of the ordinary least square model for the electricity price

UK off-peak
(R²=89%)

UK on-peak
(R²=73%)

German off-peak
(R²=68%)

German on-peak
(R²=57%)

beta tstat beta tstat beta tstat beta tstat
βconst -5.3 -11.2 -25.1 -16.5 1.1 1.6 -10.3 -5.8
βcoal 2.8 45.5 4.4 24.3 1.2 12.1 1.6 7.0
βgas 1.0 52.5 2.4 38.2 1.3 27.6 2.9 26.3
βC02 0.7 40.4 0.8 14.5 0.5 19.7 0.7 10.3
Bold coefficients are significantly different from zero.

Table 8: Prior mean and starting values of the model with non-informative priors

State 1 State 2 State 3
βconst 5 10 15
βcoal 1 1 1
βgas 1 1 1
βC02 1 1 1

Table 9: Prior mean (prior variance) and starting values of the model with informative priors

off-peak on-peak
Base Coal Natural Gas Coal Natural Gas Spike

βconst 5 (10) 10 (10) 15 (10) 5 (10) 10 (10) 100 (10)
βcoal 0 (1) 3 (1) 0 (.0001) 3 (1) 0 (.0001) 0 (1)
βgas 0 (1) 0 (.0001) 2 (1) 0 (.0001) 2 (1) 0 (1)
βC02 0 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (1)
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