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Abstract Low-carbon energy technologies are pivotal for decarbonising our econ-
omies up to 2050 and being able to at the same time ensure secure and affordable
energy supplies. Consequently, innovation that reduces the cost of low-carbon energy
sources would play an important role in reducing the cost of the transition. In this
paper we want to assess the two most prominent innovation policy instruments (i)
public research, development and demonstration (RD&D) subsidies and (ii) public
deployment policies. Using a Lasso-regression we are able to select a model that is
best able to perform in-sample predictions of patenting behaviour and international
competitiveness in 28OECD countries over 20 years. This approach allows including
two dozen variables as well as a wide range of lags of the variables and interactions
between them—in total some 47,000 variables. Our results indicate that both
deployment and RD&D coincide with increasing knowledge generation and
improving competitiveness of renewable energy technologies. According to our
estimates, if Germany had invested one standard deviation more in deployment and
RD&D support for wind technology than it actually did from 2000 on, the number of
German wind patents would have been 166 % higher in 2009. If it only increased
deployment the number of patents would have been 20 % higher and if it only
increased RD&D the number of patents would have been 122 % higher. This indi-
cates two things. First, both support schemes together have a higher effect than the
two individually. And second, RD&D support is unsurprisingly more effective in
driving patents. Thereby, timing matters. Current wind deployment based on past
wind RD&D spending coincides best with wind patenting. If we look into compet-
itiveness we find a similar picture. A hypothetical increase in German deployment
and RD&D support for wind technology by one standard deviation from 2000 on
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would according to our estimates, coincide with an improvement from 8th to 7th
position in terms of revealed comparative advantage of German wind turbines on the
world market. Thereby, the largest effect comes from deployment. Finally, we find
significant cross-border effects, especially for wind deployment. Increasing deploy-
ment in one country coincides with increasing patenting in near-by countries. Based
on the above-presented findings we argue that both deployment and RD&D support
are needed to create innovation in renewable energy technologies. However, we
worry that current support is unbalanced. Public spending on deployment has been
two orders of magnitude larger (in 2010 about 48 bn Euro in the five largest EU
countries in 2010) than spending on RD&D support (about 315 mn Euro). Conse-
quently, basing the policy mix more on empirical evidence could increase the effi-
ciency of innovation policy targeted towards renewable energy technologies.

1 Introduction

All developed countries have been putting in place a number of policies to support
renewable energy technologies for more than a decade and will continue to do so in
the foreseeable future. The corresponding policies differ widely in scale, scope and
design of legislation. However, none of the existing approaches is undisputedly
accepted as effective and efficient. Hence, quantitatively benchmarking the different
approaches is useful for structuring the discussion and identifying efficiency
potential. To do this, we will first introduce the different rationales why to support
renewables. We will than argue the most important policy to support them is to
promote innovation in order to reduce the cost of a large scale deployment of yet
uncompetitive technologies. Then, we will focus on the balance and timing of two
main policy areas to drive innovation: deployment support and (public) research
development and demonstration (RD&D) spending. We argue that numerous
countries introduced deployment support and RD&D spending but that the alloca-
tion of funds between the two and timing resemble a ‘shot in the dark’. Based on this
motivation, we will analyse a 28 country panel to determine which menus of policies
are most successful in driving innovation. Finally we will draw policy conclusions.

1.1 Why Support Renewables?

Renewable energy technologies have been publicly supported for several decades
but the reasons for doing so changed over time. Public support to the development
of biofuels and renewable energy generation were part of the war effort that aimed
at ensuring and diversifying energy supplies1 and providing technical solutions for

1 E.g. half a million producer gas vehicles running on wood pellets were used in Germany during
the war.
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war-specific purposes2 during the first and second world wars. The oil crises in the
1970s brought about substantive programmes for RD&D of photovoltaic cells and
wind turbines in Europe and the US, as one tool to reduce dependence from Arab
oil suppliers and shielding Western economies from high and volatile oil prices.
The argument of renewables as a means to reduce import-dependency reappeared in
the European public debate with the Ukrainian–Russian and Belarus-Russian ‘gas
wars’ and the increasing oil and gas prices in the 2000s. With the Club of Rome
report in 1972, the narrative on the finite nature of energy resources received high
public attention. The argument became somewhat side-lined in the public debate in
the phase of low resource prices in the 1980s but re-emerged with the ‘peak oil’
debate in the 2000s. It can be found as one rationale for public support for
renewable energy technologies in numerous public documents. One side-benefit
claimed for renewables is that, by replacing power production in fossil plants, they
reduce pollution (NOx, SOx, VOCs, etc.) that has negative health and/or envi-
ronmental externalities.3 Since the 1970s, the awareness of anthropogenic climate
change increased in the public debate. It culminated in the 1996 Kyoto Conference
in which most developed countries committed to reduce greenhouse gas emissions.
The International Panel of Climate Change (IPPC) reports reiterate that containing
global temperature increase requires a reduction of emissions from fossil fuels
while the baseline scenario expects increasing emissions. Consequently, massive
public support for renewable energy technologies was rolled out to replace existing
fossil plants by yet uncompetitive renewable units in the short term and/or to reduce
the costs of renewable energy technologies units to make them competitive in the
long term. By the late 1990s the outlined narratives indicated that a growing market
for renewable energy technologies will emerge. To anticipate this development,
economic policy makers suggested supporting domestic renewable energy tech-
nologies in order to gain a competitive edge in this growing field (i.e. industrial
policy). Furthermore, demand side polices in order to mitigate the economic crises
of the 2000s envisaged public investments in renewable energy technologies.
Consequently, industrial and macro-economic policies became a further rationale
for supporting renewables. Finally, the nuclear accidents of Chernobyl (1986) and
Fukushima (2011) undermined the public acceptance of nuclear as a source of clean
energy in some countries, making renewables the only acceptable source (Table 1).

So we conclude that several different rationales have been used to justify past
and present support for renewable energy technologies.4

2 E.g. Ethanol production from potatoes for fuelling German rockets or wind power for decen-
tralised electricity production.
3 One example: http://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/
ee_innovationen_energiezukunft_bf.pdf (BMU 2011, p. 13).
4 Most of the outlined reasons can be phrased as market-failure and hence a sensible case for
public intervention can be constructed. See for example [12], p. 83ff).
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1.2 How to Support Renewables?

Already in the past, renewable energy technologies such as hydropower and geo-
thermal energy have been widely used where they were competitive with other
energy sources. Close-to-competitive technologies such as small hydropower plants
were introduced in the market by preferential regulatory schemes and by pricing the
externalities of fossil sources, e.g. through taxes and environmental regulations.
However, competitive and close-to-competitive sources are in most countries
unable to replace conventional plants in the volumes necessary to fulfil the above-
outlined purposes. Consequently, renewable energy technologies that are not (yet)
competitive with conventional sources are required.

There are essentially three complementary strategies to replace fossil sources by
renewable energy technologies that are currently not competitive. The first one is to
substantially subsidise the current renewables until they are competitive. The sec-
ond one is to make all undesired technologies uncompetitive either by taxation or
regulation. And the third approach is to support innovation in renewable energy
technologies in order to reduce their cost in the future.

Full-scale replacement of conventional sources by currently available renewable
technologies (stimulated by subsidies and/or making conventional sources less com-
petitive) would be prohibitively expensive.5 Consequently, innovation is essential.

Table 1 Rationale for public renewable energy technology support

Event Rationale for public renewable energy support (RES)

WWI 1914–1918 and
WWII 1939–1945

Military use of renewable energy technologies

Oil crises 1972 and
1979

Reduction of energy dependence, shield economies from oil price shocks

Club of Rome report
1972

Prepare for the finite nature of energy resources

1996 Kyoto Conference RES as a means to mitigate carbon emissions from energy production

Since around 2000 RES support as infant industry policy

2008 crisis RES deployment as demand-side macroeconomic policy

1986 Chernobyl, 2011
Fukushima

RES as a means to replace nuclear reactors

Side benefit RES to reduce pollution (NOx, SOx, VOCs, …) from fossil plants

5 Thereby, the cost not only refers to the cost of the renewable energy technologies, but those of
the entire system. For example, to achieve 100 % of electricity generation from solar and wind
technology substantial investments into storage, networks and demand response are necessary. To
give one excessive example, a 10,000 MW solar installation in Germany (*10 % capacity factor)
costing about 10–20 bn Euro together with a 10,000 MW compressed air storage costing about
10 bn Euro would be able to flexibly deliver electricity the same way as a 1,000 MW coal plant
worth about 2 bn Euro. To illustrate the magnitude of this effect, an economy wide shift from the
current system to the outlined solar+storage system would increase electricity generation cost from
less than 1 % of GDP to about 10 %.
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Literature has identified two interacting innovation policies: (i) encouraging
‘learning-by-doing’ through government supported deployment of yet uncompeti-
tive technologies and (ii) public RD&D as well as public support to private RD&D.

1.2.1 Deployment Driven Innovation

In recent years, both environment and economic research started focusing on
endogenous technical change in the energy sector using learning curves. Arrow [1]
first introduced this theory showing that ‘learning-by-doing’ acted as a driver to
reduce costs through different channels.6 Costs of production are modelled as a
function of the cumulated capacity. A learning rate can be derived which estimates
the reduction of cost per doubling of capacity.

c ¼ a � Cape

LR ¼ 1� 2�e

where:
c Unit cost (€/KW or €/KWh)
Cap Deployment (cumulative capacity or production, etc.)
ε Learning elasticity
LR Technology learning rate

Learning rates played a role for official policy documents as well as they are
crucial part of a cost benefit analysis for renewable energy support [6]. Learning
curves can provide a justification of subsidies exceeding the direct effect of climate
change mitigation as they decrease the long-term costs of new technologies. That is,
deployment subsidies can lead to innovations in this sector which are more
important than the direct reduction of green house gas (GHG) emissions in terms of
social welfare [16].

1.2.2 RD&D Driven Innovation

The main purpose of RD&D is to generate innovations. Hence, it is little surprising
that RD&D spending leads to innovations that can be measured in terms of patents.
For example, Gurmu and Pérez-Sebastián (2008) develop a ‘patent production

6 James and Köhler [6] note that there have been, “early applications of learning curves, between
1930s and 1960s”.
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function’ based on R&D and lagged R&D. They find that the (semi)elasticity of
patents ranges between 0.4 and 0.7 suggesting decreasing return to scales.7 As the
current year accounts for over 60 % of total R&D elasticity, they conclude that
R&D impacts patenting at an early stage of the R&D sequence.

Public RD&D spending on particular technologies is also deemed to create
innovations.8 For example, [3] find that public RD&D expenditure stimulates
innovation in renewable energy technologies.

1.2.3 A Combination of Deployment and RD&D is Driving Innovation

Based on earlier literature Wiesenthal et al. [17] present a two-factor learning curve
model that disentangles two of the most important learning factors: learning by
doing and learning by researching. The latter describes the relationship between the
accumulated knowledge stock and production costs. For a given technology t and
time period y, the curve can be described as follows:

Ct;y ¼ aQ�a
t;y KS

�b
t;y

where:
C Costs of unit production (€/W)
Q Cumulative Production (W)
KS Knowledge stock (here: approximated through R&D investments, €)
α Elasticity of learning by doing
β Elasticity of learning by researching
a Normalisation parameter with respect to initial conditions

Soederholm and Sandqvist [13] use a two-variable model using deployment and
R&D to estimate the effectiveness of different subsidy schemes. They show that
learning rates depend crucially on the specification used. Quantifying effects
remains difficult and the authors stress that simultaneity can lead to possible biases
as for example reduced costs can lead to higher deployment.

Lindman and Söderholm (2012) review 35 studies on learning rates for wind
power and warn that results are econometrically spurious in most empirical esti-
mates. They argue that more attention should be paid on “learning and knowledge
spillovers in the renewable energy field, as well as to the interaction between
technology learning and R&D efforts”.

Koseoglu et al. [8] discuss the allocation of subsidies to either R&D or market
application. Their conclusion is that R&D is underused compared to market
application subsidies. A possible reason could be that short term effects of
deployment are more visible than R&D and therefore favoured by policy makers.

7 Similar to Hall et al. (1986) who analysed data set from the seventies with similar models.
8 This is despite crowding-out effects of private RD&D spending. See for example [10].
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However, too high deployment subsidies can induce lock-in into a (short-term) cost
efficient technology preventing the development of other technology with higher
long-term potential. Additionally, large subsidies can distort market incentives in a
way that there is no net reduction in fossil energy use as the production of
renewable energy units is very energy intensive. Public R&D on the other hand can
fill the knowledge gaps covering areas which would not profitable for private R&D.
In the US, states with transparent and openly available public R&D also attracted
significantly more private R&D and venture capital in the respective sector [8].

The model can be extended with additional variables to account for other factors
that drive technological change.9 Johnstone et al. (2010) conduct a panel regression
across 25 countries between 1978–2003 for renewable energy patents showing that
with respect to patent activity taxes, obligations and tradable certificates are the
only tools statically significant. The estimations exhibit that R&D spending is more
effective for wind technologies whereas solar technologies are better supported by
price incentives. Furthermore, stronger environmental legislation leads to more
patents with heterogeneity across technologies: obligations and tradable certificates
are most important for wind energy, which can be explained by the cheapest form
of renewables hypothesis. According to their findings, solar energy on the other
hand requires more direct investment support. Nonetheless, Johnstone et al. (2010)
argue that in general most patent estimates are flawed due to country heterogeneity
and time trends (Fig. 1).

Bettencourt et al. [2] explain the production of new energy patents in terms of
new R&D investments and expanding markets based on a Cobb-Douglas produc-
tion function. They find that ‘most technologies show greater sensitivity to market
growth than to public R&D investments though for wind the two contributions are
similar’.

Summing up, literature provides some evidence of (i) decreasing returns to both,
deployment and RD&D in driving innovation and (ii) a potential positive interac-
tion of the two policy measures. In addition, the price of the competing technologies

Fig. 1 Schematic picture of cost reduction for renewable energy technologies

9 Popp [10] argues that the knowledge stock and the price of energy are important drivers of
innovation in renewable energy technologies.
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matters. This would indicate that innovation is best driven by a combination of
RD&D and deployment. We summarise this interaction in Fig. 2. Innovations that
cause system cost reduction are driven by (1) a certain amount of initial (or basic)
RD&D that brings down the cost of the technology before the first unit is deployed,
(2) learning-by-doing through the subsidised deployment of certain amount the
technology, (3) a price on carbon making conventional forms of energy less
competitive and (4) parallel RD&D expenses in order to speed up the learning.
Finally (5), the break even for the new technology is contingent on how well the
negative externalities of the incumbent technologies are priced in.

If this model were a fair description of reality, there should be an optimal
combination of RD&D spending and deployment. In this case, one would expect
that such an optimal combination is different for different technologies. The exact
relationship is, however, impossible to determine ex ante. Nevertheless, ex-post
analysis of existing support schemes should allow to learn on efficient timing and
balance.

1.3 Renewables Support in Practice

Based on the rationales outlined in the first section (decarbonisation, import sub-
stitution, etc.), various support policies have been implemented with significant
differences across countries and changes over time. Differences are partly explained
by national differences in the prioritisation of the different aims. For example, if the
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Fig. 2 Deployment versus RD&D expenditure for wind and solar in 2010 in six EU countries (in
mn Euro). Source Bruegel calculation based on IEA and datastream. Note Net deployment costs
are calculated as the difference of the deployment costs (Deployment costs are calculated as the
installation costs per MWe multiplied with the deployed capacity. The country-specific costs per
MWe are obtained from the “Projected Costs of Generating Electricity 2010” report of the IEA.)
and the net present value of the future electricity generated (The net present value of future
electricity generated is calculated by discounting future revenues which can be obtained by
projecting the yearly energy prices (we use the price of a 2013 futures contract) and production of
the respective technology in the respective country (differences across countries arise because of
varying hours of sun/wind per year as well as different energy prices). We assume a nominal
interest rate of 10 %). The countries are the five largest EU countries (DE, ES, FR, IT, UK) plus
the Czech Republic (the largest Central East European country for which we have data)
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goal is decarbonisation, then emission pricing might play a more prominent role. If
the concern is on industrial policy, instead, RD&D subsidies might be preferred.
Finally, if security of supply is deemed to be more important, then deployment may
be the focus. However, we cannot read the choice of a support mechanism or its
intensity only as a techno-economic optimal response to the aforementioned
challenges. In fact, every support mechanism produces substantial distributional
effects, and institutional and information barriers are high. Consequently, without
the complex political economy it is impossible to understand why different coun-
tries (and even regions) embarked on very different policy mixes.

There are different reasons why it is difficult to analytically identify optimal
policy mixes: (i) the different rationales for renewables support, (ii) the numerous
technology options, (iii) the substantial differences in the initial conditions, (iv) a
wide continuum of combinations of support policies. According to Fig. 2, countries
like Germany and Italy spent on RD&D less than 0.5 % of the budget for public
support to the deployment of renewable energy technologies. Thereby, to our
knowledge no country applies an ‘analytic’ approach for determining the policy
mix that best suits the rationales. This resembles a ‘shot in the dark’ approach, and
its persistence is astonishing, given the magnitude of the corresponding public
spending (Fig. 3).
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Fig. 3 Deployment versus RD&D expenditure for wind and solar in 2010 in six EU countries (in
mn Euro). Source Bruegel calculation based on IEA and datastream. Note Net deployment costs
are calculated as the difference of the deployment costs and the net present value of the future
electricity generated
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1.4 Research Question

Our research question is based on the above argumentation that (i) there are dif-
ferent rationales for supporting renewables; (ii) for all rationales, long-term cost
reduction is key. Therefore, supporting innovation in renewable energy technolo-
gies is the major policy to achieve each of the policy goals; (iii) literature has
identified deployment policies and RD&D spending policies as effective innovation
policies; (iv) countries use a very heterogeneous set of balance and timing of the
two policies.

The research question is whether innovation in certain renewable energy tech-
nologies (in our case wind and solar) can be best encouraged by a specific timing
and balance of deployment policies and RD&D spending.10

2 Data

We build a panel of 28 OECD countries, covering the time period from 1990 to
2010. The main variables of interest—patent count, R&D expenditure and
deployment—are provided by the OECD and IEA statistical services. We focus on
the two most prominent renewable energy technologies: wind power and photo-
voltaic solar energy. These two sources accounted for about 64 % of newly installed
capacities in 2012 in the EU, and accounted for roughly 7 % of total cumulative
capacity by 2010. We follow the OECD classifications of patenting and spending
into these two categories.11

Patents in this data set refer to granted patents and the dates referred to are the
priority date, which is the date used by patent examiners to establish novelty. In
effect this is the date of invention. This allows us to focus on the innovative timing
without complications due to delays in different legal systems. However, since the
dataset only includes granted patents, some data in later years is still spotty as, for
example, a patent filed and assigned a priority date in 2010 might only be granted in
subsequent years.

Similar to the literature on learning curves, we use lagged deployment and
RD&D to explain technical change. The difference in our approach is that we proxy
innovation by patents rather than costs. We consider the effects on patenting of (i)
the knowledge stock, (ii) the deployment stock, (iii) technology spillovers, and (iv)
country spillovers.

10 I.e., we will not evaluate individual instruments (such as ‘green certificates’ vs. ‘feed in tariffs’)
or individual technologies (such as ‘on-shore wind’ vs. ‘off-shore wind’).
11 http://www.oecd.org/env/consumption-innovation/44387191.pdf.
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The knowledge stock of each technology is measured as the cumulated sum of
annual patents in the corresponding technology. The deployment stock is the
cumulated sum of deployed technology, measured in MW. We use different dis-
counting factors (0, 5, 10, 20 %) to account for the depreciation of the knowledge
stock and the deployment stock over time. We account for technology spillovers by
considering the impact of patenting and deployment in a given technology on the
other technologies (i.e. patents and deployment in wind are included as control
variables for the analysis in solar.) We also control for patenting and deployment in
a broader range of renewables which includes solar thermal, geothermal, and wave
energy. Country spillovers are taken into account by controlling for the deployment
in the rest of the continent (e.g., one of the factors considered for explaining
German patenting in wind energy is the deployment of wind power in Europe
minus the German deployment). Furthermore, we also control for the deployment in
all other countries weighted by the inverse distance. Here we use different distance
measures, as provided by CEPII12 (Table 2).

Table 3 provides descriptive summary statistics of the variables while Figs. 4, 5
and 6 plot the values of the key indicators for the EU and the US over the time
period under consideration, 1990–2010.

The number of patents claiming a particular priority year (Fig. 4) demonstrates a
sharp increase in patenting in wind and solar technologies after 2005. While the EU
and the US claim about the same number of solar patents throughout the sample
period, the EU patents significantly more in wind technologies than the US.

Table 2 Summary of main variables

Units Source Coverage

Patent count Absolute number OECD 1990–2011

Installed capac-
ity (deployment)

Megawatts IEA,
EIAa

1990–2011

RD&D
expenditure

Millions of Euros (2011
prices and exchange rates)

IEA,
OECDa

1990–2011 (missing in some
years for some countries)

Notes Patents are measured with the OECD count system, where patents are fractionally allocated
to countries according to the countries of the applicants
Deployment variables all refer to new deployment in a given year which is calculated from the
change in total deployment, therefore data is available for one year less than the entire dataset
To deal with missing data we linearly interpolate the missing data values and we average the last/
first 3 years in order to fill possible missing at the beginning or end
a For world total

12 Thierry and Soledad (2011) Notes on CEPII’s distances measures: the GeoDist Database CEPII
Working Paper 2011–2025—See more at: http://www.cepii.fr/CEPII/en/bdd_modele/presentation.
asp?id=6#sthash.ZE7LKOSm.dpuf.

When and How to Support Renewables?—Letting the Data Speak 301

http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=6#sthash.ZE7LKOSm.dpuf
http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=6#sthash.ZE7LKOSm.dpuf


Despite the stronger patenting in solar, US solar deployment lags significantly
behind US wind deployment (Fig. 5). On the other side of the Atlantic, EU solar
deployment is outpacing EU wind deployment from 2009 on—cumulated capaci-
ties stay still larger.

Fig. 4 Solar and wind
patents US and EU

Table 3 Descriptive statistics of main variables

Min Max Mean Std. deviation Obs

Total patents 0 52433 3100 7447 616

pv patents 0 544 14 54 616

Wind patents 0 186 7 17 616

rdd renewables, M€ 0 1807 51 119 498

rdd pv, M€ 0 325 20 36 482

rdd wind, M€ 0 152 7 12 469

Total deployment, MW 0 57050 1507 4232 609

pv deployment, MW 0 9303 109.3 658 609

Wind deployment, MW 0 9645 253.5 784 609

Observations per country, per year
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When we consider RD&D (Fig. 6), we do see a small increasing trend after 2005
that slightly echoes the increase in patenting. Perhaps unsurprisingly, given the
patenting figures, RD&D in solar is greater than in wind, lending support to a
notion that connects RD&D spending with actual innovation.

Finally, as an alternative measure of the relative progress individual countries
made in making solar panels and wind turbines produced in their county compet-
itive on the global market, we use the revealed comparative advantage (RCA). In
order to obtain an interpretable measure with a known distribution we use the
ranking of the RCA-score for each country compared to our sample. To ensure the
intuitive ‘more is better’, we invert the ranking, so that the worst country gets a 1
and the best country gets a score equal to the number of countries (28). To give an
example, the US was a ‘slightly above average’ performer in exporting solar panels
in the 1990s (inverse ranking score below 20), it became one of the most successful
solar exporters in the early 2001–2002 (inverse ranking above 20) before it started
to constantly lose competitive edge in solar exports until 2011 (inverse ranking 12)
(Fig. 7).

Fig. 5 Solar and wind
deployment in US and EU
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Fig. 6 Solar and wind RD&D in US and EU

Fig. 7 Revealed comparative advantage position in wind and solar for selected countries,
1990–2011

304 G. Zachmann et al.



3 Analysis

We do not possess a theoretical model that explains patenting in a certain tech-
nology in a certain country based on past deployment, RD&D spending and other
variables.13 While our prior belief is that both, deployment, RD&D spending and
their interaction have all a positive effect on patenting, it is unclear to us how fast
the corresponding inputs might generate innovation and whether this effect is linear
or not. Consequently we decided to rely on a data-driven approach to select the
relevant variables, time lags, operations (such as the logarithm) and interactions. To
select the explanatory variables included in our model we proceed in five steps.
First, we create four ‘derivatives’ of each of the original variables (level, log, square
root and square). Then we include the first five lags in the set of explanatory
variables. Third, we include all possible partial sums of consecutive lags, such as
the deployment in the past 5 years, or the RD&D spending 3–6 years ago. Fourth,
we include dummies for countries and years. Finally, we create all possible bilateral
interaction terms between all these variables (original variables, derivatives, lags,
partial sums and dummies). For example, one variable is the interaction of
deployment in the last five years with the RD&D spending 3–6 years ago. This
gives us more than 47,000 explanatory variables.

A standard panel regression of 28 countries times 20 years based on about
47,000 explanatory variables (that are suffering almost perfect collinearity) is
obviously unfeasible. To select the explanatory variables that are most useful in
explaining the patenting in certain technologies we employ a penalised regression
approach (see [15],14 the so-called ‘Lasso’. Basically, instead of running an
unconstrained optimisation problem (of SSR or likelihood), the Lasso does a
constrained optimisation with a penalty. The Lasso is a particular case of shrinkage
estimator. These are estimators that optimise on a restricted set of values for the
coefficients of the variables. The penalty parameter can be chosen by the researcher,
and controls how large this restricted set is. The particular form of the penalty
function results in sets of different shapes. The Lasso penalty in particular results in
subsets that have a corner at zero in all dimensions. The outcome is that the
optimum is reached with many coefficients set exactly to 0. Hence, by its con-
struction the Lasso performs a variable selection. Thereby, the larger the lambda,
the more restrictive the variable selection is and the smaller the set of non-zero
coefficients. In addition to the variable selection, the coefficients for all non-zero
variables have been shrunk. While other selection mechanisms that do not apply
shrinkage may be unstable because they are affected by collinearity, the Lasso
overcomes this issue by construction.

13 To our knowledge, existing models like “one factor learning curves”, “two factor learning
curves” or Cobb-Douglas patent production functions are not based on theoretical models either.
14 As patents are typically discretely scaled (i.e., 1, 2, 3,…) we base the regression on a Poisson
model.
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This allows for two interpretable outputs: first, the order in which the different
explanatory variables are included in the regression—when reducing lambda—is
meaningful. It gives an indication on which variables contribute most to explaining
the regressant.15

Second, the size and sign of the coefficients of a ‘best’ model can be interpreted.
We define the best model as the model that best performs an n − 1 prediction
exercise. That is, we do not focus on maximising the goodness-of-fit, but want to
minimise the forecasting error. This allows an indication which combination of
factors is best able to predict patenting and whether these factors have a positive or
negative impact on the prediction. The standard Lasso does not come with an easy
way to calculate the standard errors of the coefficient estimates, and a Bayesian
approach would help in this regard. In any case, it is interesting to see which
variables are most effective in explaining the variation in the explained variable,
and in which direction this variation appears.

In order to make the results more easily interpretable, all variables are stand-
ardised. Also, model selection is restricted to models with at most 25 explanatory
variables.

We present the result for solar in Table 4. The Lasso algorithm only selects 11
out of the 47,000 variables as being most relevant for predicting solar patenting
behaviour.

The first, observation is that rdd_solar and rdd_res, i.e., the spending on
RD&D for solar and the spending on RD&D for all renewables have a measurable
effect. The delay with which rdd_solar increases patenting appears to be 3–4 years.

A second observation in that pat_total is important. We interpret this variable as
a control for the overall patenting activity in a country/year.

The third important variable is market size. If dep_total is large, the impact of
rdd_solar on patenting gets bigger.

The stability of the above-presented results is confirmed by a plot of the coef-
ficients selected by the Lasso for a range of lambdas (Fig. 8).

For wind, a larger number of variables have been included in the estimation by
the Lasso.

Again, total patenting (pat_total) is controlling for the general propensity to
patent in a given country in a given year. And patenting in solar (pat_solar) seems
even better suited to control for the propensity to patent in (renewable?) energy
technologies.

Also, RD&D spending on wind technology seems to encourage patenting in this
area. We find rather long and disperse time-lags for the effect of RD&D on

15 For shrinkage estimators such as ridge or lasso ‘f(betas) < c’ for some function f and some
constant c. With the ridge, f is the sum of the squares of the coefficients. Hence in the Ridge, all
coefficients are non-zero, but a larger value is assigned to the coefficient that helps reducing the
SSR the most. With the Lasso, f is the sum of the absolute values of the coefficients. Thus again,
we obtain larger beta for variables that help reducing SSR, but in addition, the least significant
coefficients are forced to 0.
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patenting. RD&D between the second to sixth year (partsum5_lag2) seems to be
most effective.

The most interesting finding in our view is that the effect of RD&D spending on
wind technologies gets substantially augmented when the deployment of wind
turbines on the continent is high (continent_dep_wind: rdd_wind). Again timing
matters, current deployment based on past RD&D spending coincides best with
patenting.

Table 4 Results for solar photovoltaic

(Intercept) 2.849

pat_total_rooted 0.183
pat_total_rooted_lag2 0.071

pat_total_rooted_partsum1_lag1 0.003

pat_total_rooted_partsum2_lag1 0.022

rdd_solar_squared: dep_total_partsum3_lag3 0.050

dep_tech_lag3: rdd_res_squared_lag5 0.022

rdd_res_squared_lag5: dep_solar_partsum1_lag2 0.007

rdd_res_squared_lag5: dep_solar_partsum2_lag2 0.036

rdd_res_rooted_lag5: rdd_solar_rooted_lag4 0.336
rdd_res_rooted_lag5: rdd_solar_rooted_partsum1_lag3 0.000

Note Model chosen from >47,000 variables based on the lowest mean square error in predicting
the n’th observation based on n − 1 data. Coefficients rounded at the third decimal digit. Number
of included variables limited to 25 during model selection

Fig. 8 Coefficients for solar patents at different lambda
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Beyond these three main drivers, there are a number of variables with typically
small negative values that are somewhat difficult to interpret. We would see them as
correction factors that reduce the aforementioned effects in certain conditions. The
largest is the interaction of RD&D spending on renewables with the deployment of
wind on the continent (continent_dep_wind: rdd_res). One way of interpreting this
is that countries with a lot of non-wind RD&D spending do not benefit (in terms of
wind patents) as much from the deployment of wind turbines on their continent, as
countries that focus their renewables RD&D on wind (Table 5).

The stability of the above-presented results is confirmed by a plot of the coef-
ficients selected by the Lasso for a range of lambdas (Fig. 9).

To get some indication of the quality of our results we calculate the share of
variance in the patenting behaviour our model is able to explain (similar to the R2).
The results are displayed in the following table. Given their parsimonious param-
eterisation the ‘goodness-of-fit’ performance of both models is impressive
(Table 6).

Table 5 Results for wind power

Intercept 2.014

continent_dep_wind_lag5: rdd_res_squared_partsum3_lag2 −0.055

continent_dep_wind_partsum4_lag3: rdd_res_squared_partsum1_lag3 −0.012

continent_dep_wind_partsum4_lag3: rdd_res_squared_partsum2_lag2 −0.068

continent_dep_wind_partsum4_lag3: rdd_res_squared_partsum2_lag3 −0.062

continent_dep_wind_partsum5_lag2: rdd_res_squared_partsum2_lag2 0

continent_dep_wind: rdd_wind_partsum5_lag3 0.009

continent_dep_wind: rdd_wind_rooted 0.062

continent_dep_wind: rdd_wind_rooted_lag2 0.188
continent_dep_wind: rdd_wind_rooted_partsum1_lag1 0.012

continent_dep_wind: rdd_wind_rooted_partsum5_lag3 0.199
dep_total_lag5: continent_dep_wind_partsum2_lag1 −0.003

dep_total: rdd_wind_partsum2 −0.008

dep_wind_dwdist: rdd_wind_dwdist −0.016

dep_wind: dep_wind_dwdistwces 0.069

pat_solar_rooted_lag1 0.36
pat_solar_rooted_partsum1 0.034

pat_total_logged 0.068

rdd_res_squared_lag4: continent_dep_wind_partsum4_lag3 −0.045

rdd_wind_rooted_lag5 0.015

rdd_wind_rooted_partsum3_lag2 0.002

rdd_wind_rooted_partsum5_lag2 0.346
Note Model chosen from >47,000 variables based on the lowest mean square error in predicting
the n’th observation based on n − 1 data. Coefficients rounded at the third decimal digit
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To display the size and timing of the effects suggested by our model parame-
terisations, we explore the consequences of a series of hypothetical shocks to our
explanatory variables of interest. We focus on Germany in 2002, considering what
path patenting would have taken in the years 2002–2009 if the country had
increased deployment and RD&D individually by one standard deviation. We also
consider the effects of a joint increase. The actual magnitudes of these hypothetical
shocks are presented in Table 7.

3.1 Effect of Only RD&D Support

Increasing RD&D support by one standard deviation over a period of time has a
substantial impact on patenting in this technology. Figure 10 demonstrates the effect
for RD&D. An increase in solar RDD by 17 mn Euro per year from 2002 on would

Fig. 9 Coefficients for wind patents at different lambda

Table 6 Deviance ratio for
models explaining patenting
behaviour in wind and solar

Deviance ratio No. of variables
incl. intercept

Solar patents 0.73 11

Wind patents 0.75 22

Table 7 Magnitudes of the
hypothetical shocks for
Germany

Deployment RD&D

Solar 2,366 MW 17 mn Euro

Wind 950 MW 9 mn Euro
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according to the model we estimated coincide with increasing the number of patents
by approximately 3 patents (9 % over baseline) per year in the subsequent period.
This effect is even more pronounced when we consider wind patents, where the
hypothetical scenario shows sustained increases in patents per year, going up to
100 % increases over the baseline.

3.2 Effect of Only Deployment

As presented in Fig. 11, the effect is rather different in the case of deployment.
Here, an increase in solar deployment spending from 2002 onwards would
according to our model coincide with increasing the number of solar patents by
about 10 patents per year (approximately 30 % above the baseline). However, the
effect is more muted for wind patents where we do observe an increase albeit a
smaller percentage above the baseline.

3.3 Effect of Policy Combination

For the policy combination, we consider what could have happened if RD&D and
deployment were increased simultaneously in the respective technologies. The
results presented in Figs. 12 and 13 demonstrate additional patents that would result
from the policy combination over the effects of either individual policy on its own.
Here, the non-zero effects show us that the combination of policies is greater than
simply the sum of their parts. In fact, for wind the additional benefit in terms of
patents when joining policies is up to 25 % (1 % for solar).

Fig. 10 Predicted response to an increase in RD&D spending in Germany by one standard
deviation on patenting in solar (left) and wind (right) in Germany
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3.4 Cross-Border Spill-Over

We also look at cross-border effects to analyse what impact either of the policies
might have on patenting in neighbouring countries. Figure 14 present the results for
Germany and its neighbours. We find the strongest effect for wind deployment
which is shown to be associated with an increase in patenting of up to 20 % in some
years for Denmark and the Netherlands.

Fig. 11 Predicted response to an increase in deployment in Germany by one standard deviation on
patenting in solar (left) and wind (right) in Germany

Fig. 12 Predicted response to an increase in RD&D spending and deployment in Germany by one
standard deviation on patenting in solar (left) and wind (right) in Germany

When and How to Support Renewables?—Letting the Data Speak 311



Fig. 13 Predicted difference between a combined increase in deployment and RD&D on patenting
in solar (left) and wind (right) in Germany compared to the sum of the individual effects

Fig. 14 Predicted response to an increase in RD&D (above) and deployment (below) by one
standard deviation on patenting in solar (left) and wind (right) in Germany
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3.5 From Patents to Competitiveness

The explained variable, number of patents in the narrowly define technology, is
only an imperfect proxy for what policy would really care about—innovation
leading to sustainable reduction in the total cost of using the technology to replace
existing technologies.16 To also capture cost-savings that improve the technology
beyond patented innovation we repeat the analysis using the inverse RCA ranking.
This should allow us to understand which policies (deployment, RD&D support or
both) coincide with improvements in the competitiveness of the domestic renewable
energy technology industry (Table 8).

Overall, the results for RCA are significantly less robust. Obviously, the com-
parative advantage and its development over time is determined by many factors do
not properly control for (labour cost, education, capital cost, etc.). Consequently, the
variation of RCA explained by a relatively sparse model of less than 25 variables is
low if compared to the results obtained in the patents regression. Thus, the results
below should be interpreted with a substantial degree of caution.17 The major factor
that helps predicting the revealed comparative advantage in wind and solar in a
country, is the logged number of all patents granted in this country in this year
(pat_total_logged, see Tables 9 and 10 in the Appendix). This indicates that a key
driver of export specialisation in renewables is the innovative power of a country.

3.6 Deployment and Competitiveness

The clearest result for competitiveness is that deployment is indeed increasing the
competitiveness of the corresponding technology. A sustained increase in domestic
deployment of wind turbines increases the RCA ranking in wind turbines by about
one position in the case of Germany. For solar panels there is also a clearly positive
impact. Countries which deploy more solar panels are also exporting more of them
in future. The clarity of the results somewhat surprised us, as our prior was that
larger deployment coincides with larger domestic demand and hence more limited
room for exports (Fig. 15).

Table 8 Deviance ratio for
models explaining the RCA in
wind and solar

(Sparse model) Deviance ratio No. of variables
incl. intercept

Solar RCA ranking 0.29 23

Wind RCA ranking 0.46 23

16 Popp [11] for example argue that the diffusion of renewables is mainly driven by regulation and
less by the knowledge stock.
17 We force the model selection to the subset of models that include 25 explanatory variables or
less, as we noticed a tendency towards models with more than one hundred explanatory variables
when only optimizing on the in-sample predictive power.
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3.7 RD&D and Competitiveness

The results for the impact of RD&D on competitiveness seem all not very mean-
ingful. Our prior would be to find a positive impact of domestic support on RD&D
support on the competitive position of the corresponding technology. By contrast,
our results indicate that the impact of RD&D is insignificant (Fig. 16).

3.8 Policy Combination and Competitiveness

Similarly, the policy combination does not seem to lead to very meaningful results
on competitiveness. The joint policies would increase the RCA score in wind

Fig. 15 Predicted response to an increase in deployment by one standard deviation on the RCA in
solar (left) and wind (right) in Germany

Fig. 16 Predicted response to an increase in RD&D expenditure by one standard deviation on the
RCA in solar (left) and wind (right) in Germany
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turbines above the baseline by about 4 % on average per year. In the case of solar
panels, the joint policies would lead to a very small (less than 0.0025 %) decrease in
RCA score; however, as in the case of RD&D alone, it is unclear whether this
difference is significant. These results could loosely be restated as an increase in
relative exports of wind turbines and a tiny decrease in relative exports of solar
panels. However as outlined above, we would expect these policies to play only a
small role in explaining overall changes in export competitiveness. What they do
demonstrate clearly, and suggest as an avenue for further research, is a strong
difference in how deployment and RD&D affect competitiveness in the given re-
newables fields (positively and significantly in the one case, ambiguously and close
to insignificantly in the other) and the need to disentangle the joint effects for clear
policy prescriptions on the choice of domestic renewables support and export
competitiveness (Fig. 17).

4 Discussion

Our results suffer from a number of potential drawbacks:

• Additional explanatory variables and controls for locational factors (sun, wind
conditions), neighbouring country effects, interaction terms, non-linear rela-
tionships and others could make sense.

• Our econometric approach does not allow us to fully explore the potentially
complex interactions between the analysed variables. Whether a certain factor
such as ‘deployment in the past 5 years’ is a true cause, or just an intermediate
variable itself being caused by past knowledge stock and RD&D activities cannot
be properly disentangled. In the same vein we cannot separate cause-and-effect

Fig. 17 Predicted difference between a combined increase in deployment and RD&D on the RCA
in solar (left) and wind (right) in Germany compared to the sum of the individual effects
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for explained and explanatory variables. Such endogeneity might for example
arise because countries that were successful in renewable innovation in the past
might feel encouraged to invest more in this field. Hence, our results do not allow
us to properly assess the impact of additional RD&D spending in t on patenting in
all subsequent periods, as this would require a (theoretically founded) structural
model of all interactions.

• Furthermore, our model might just be an ‘explanation in hindsight’, meaning
that it might explain those 13 years for the 28 countries but not earlier years or
future years or other countries.

• The explained variable, number of patents in the narrowly defined technology, is
only an imperfect proxy for what policy would really care about—innovation
leading to sustainable reduction in the total cost of using the technology to
replace existing technologies.18 That is, we neither cover how patenting in
complementary technologies such as storage is affected, nor can we measure
unpatented innovation (such as process innovation or scale effects) that might
have substantial cost-saving effects. We also do not know the actual cost-
reduction effect of the patents. On the other hand, the relative competitiveness of
exports on the global market—as measured by the RCA ranking—seems not to
be a good proxy either.

• Furthermore, we cannot give meaningful p-values, so some of the coefficients
might have just been included by chance. Going for a Bayesian approach might
allow an assessment of the confidence we put into the individual parameter
estimates. In addition, it would allow us to include prior information (such as
interactions deduced from theory). Hence, a corresponding implementation is
very promising but had to be left to further research.

Our results can at most shed light on what timing and balance of national support
policies coincided with a certain patenting behaviour. This finding cannot, however,
be directly translated into which policy combination is efficient. Such a ‘policy
optimisation’ would require the parameterisation of the ‘patent production function’
to be complemented by a cost-function of the policies. Based on this, an ‘optimal’
policy balance and timing could be determined. Obviously, the parameterisation of
the model would need to be constantly updated because the persistence of the
interaction is not given. In fact, it would be akin to optimising a portfolio of policies
in order to produce the maximum number of patents or maximise the competi-
tiveness ranking. Similarly to financial hedging strategies, such a ‘portfolio opti-
misation’ approach would not work in the case of an event that was not observed in
the historical data used for parameterisation (‘black swan’). Consequently, the
choice of deployment and RD&D support policy should not be mechanically based
on a quantitative optimisation strategy. Nevertheless quantitative ‘policy optimi-
sation’ could serve as valuable additional tool in particular as a benchmark against
existing (‘shot-in-the-dark’) strategies.

18 Popp [11] for example argue that the diffusion of renewables is mainly driven by regulation and
less by the knowledge stock.
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5 Conclusion

Our results are in line with the hypothesis that deployment and RD&D expenditure
both have an impact on technology development. Our finding that the combination
of deployment and RD&D expenditures has a positive impact on patenting is in line
with two-factor learning curves.

Our results indicate substantial differences in the ‘patent production function’
between the two analysed technologies. While solar patenting strongly coincides
with both past RD&D expenditures and deployment, wind patenting did not
coincide with deployment alone, but was strongest in countries that featured a
policy combination of RD&D expenditures and deployment. Whether this points to
idiosyncratic learning curves for each technology, or whether certain technology
families enjoy more similar learning curves or if technologies at a similar stage of
maturity enjoy similar learning curves, is left for further research.

In addition, our results indicate that timing, cross-border spillovers and tech-
nology spillovers matter for the success of support policies. With respect to timing,
the data suggests that a certain sequence of RD&D support and deployment is most
strongly linked to patenting. In particular we find that deployment based on earlier
RD&D expenditures strongly coincides with wind innovation. Cross-border spill-
overs play a positive role for wind deployment. Finally, we have (slight) evidence
that technology spillovers might matter for patenting.

6 Policy Implications

Our findings are in line with the hypothesis that both deployment and RD&D
support are effective in advancing technology development. Our results also imply
that the weight and timing of deployment and RD&D support matter. That is,
certain combinations of deployment and RD&D support are more efficient than
others. This calls for a strategic approach towards renewable energy technology
support. Furthermore, the existence of substantial cross-border spillovers from
deployment implies that international coordination might make renewable energy
technology support more efficient.

Consequently, going beyond an uncoordinated ‘shot-in-the-dark’ is worthwhile,
though more research is necessary to identify support structures that are resilient
and efficient. In this respect, given the size of the issue (recall: about 48 bn Euro
spent on deployment and 315 mn Euro spent on RD&D support in the five largest
EU countries in 2012) investing more in ex-ante and ex-post evaluation of
renewable energy technology support schemes is a ‘no regret option’.
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Appendix

A.1 Patent Regression
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A.2 RCA Ranking Regression

Table 9 Solar

(Intercept) 2.588

dep_solar_partsum2_lag1 0

dep_solar_partsum3_lag1 0.01

dep_total_cumulated:rdd_solar_dwdist −0.107

pat_total_logged 0.241

rdd_res_rooted_partsum5_lag3 0.075

rdd_res_squared_lag5:rdd_solar_logged_partsum4 −0.018

rdd_res_squared_partsum4_lag2:rdd_solar_logged_partsum5_lag3 −0.001

rdd_res_squared_partsum5_lag2:rdd_solar_logged_partsum5_lag3 0

rdd_res_squared_partsum5_lag3:rdd_solar_logged_partsum5_lag2 −0.062

rdd_res_squared_partsum5_lag3:rdd_solar_logged_partsum5_lag3 −0.019

rdd_solar_dwdist:rdd_solar_dwdistwces −0.011

rdd_solar_dwdistwces:rdd_res_rooted_partsum5_lag3 0.061

rdd_solar_logged:rdd_res_squared_lag5 −0.003

rdd_solar_logged:rdd_solar_logged_lag3 0.014

rdd_solar_logged:rdd_solar_logged_partsum1_lag2 0

rdd_solar_logged_partsum2:rdd_res_squared_partsum2_lag2 −0.022

rdd_solar_logged_partsum2:rdd_res_squared_partsum4_lag1 −0.001

rdd_solar_logged_partsum3:rdd_res_squared_partsum4_lag2 −0.013

rdd_solar_logged_partsum5:rdd_res_squared_partsum5_lag2 −0.006

rdd_solar_logged_partsum5:rdd_res_squared_partsum5_lag3 −0.001

rdd_solar_logged_partsum5:rdd_solar_squared_partsum3_lag1 0

rdd_solar_squared:rdd_solar_logged_partsum5_lag3 −0.021
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Table 10 Wind

(Intercept) 2.603

continent_dep_wind 0.028

continent_dep_wind:rdd_res_rooted_lag3 0.025

continent_dep_wind:rdd_res_rooted_partsum1_lag2 0.018

continent_dep_wind:rdd_wind_partsum5_lag3 0.011

dep_total:dep_wind_dwdist −0.009

dep_wind_dwdist:dep_total_partsum2 −0.025

dep_wind_dwdist:dep_total_partsum5 −0.003

dep_wind_dwdist:dep_wind_dwdistwces −0.008

dep_wind_dwdist:rdd_wind_dwdist −0.029

dep_wind_dwdist:rdd_wind_rooted_lag5 −0.033

dep_wind_dwdist:rdd_wind_rooted_partsum2_lag3 −0.008

dep_wind_dwdist:rdd_wind_rooted_partsum5 −0.052

dep_wind_dwdistwces:dep_wind_partsum5_lag3 0.02

pat_total_logged 0.159

rdd_wind_dwdistwces:dep_wind_partsum5_lag3 0.009

rdd_wind_dwdistwces:rdd_res_lag5 0.014

rdd_wind_dwdistwces:rdd_wind_partsum5_lag2 0.009

rdd_wind_dwdistwces:rdd_wind_partsum5_lag3 0.028

rdd_wind_logged_partsum2:rdd_wind_logged_partsum3_lag2 −0.006

rdd_wind_logged_partsum3:rdd_wind_logged_partsum2_lag3 −0.012

rdd_wind_logged_partsum3:rdd_wind_logged_partsum3_lag3 −0.02

rdd_wind_logged_partsum5:rdd_wind_logged_partsum4_lag1 −0.014
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A.3 Solar RCA
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A.4 Wind RCA
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